108 research outputs found

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    U-Shaped Microstrip Patch Antenna for WLAN/WIMAX Applications

    Get PDF
    A full-duplex radio design communication systems design based on the WiMax/WLAN antenna. The design an antenna in this report presented a triple-band operation with significant impedance bandwidth for WLAN/WiMAX system. The designed antenna having the compact size of 10 x 26 mm2 and shaped of antenna is U-shaped. The overall performance of the antenna three different bands 1) band-1:- 2.40 to 2.53 GHz, 2) band-2:-3.40 o 3.60 GHz and 3) band-3:- 5.00 to 6.00 GHz, these bands cover the WiMAX (2.5, 3.5, 5.5) and WLAN (2.4, 5.2, 5.8) bands. Here HFSS simulator used to simulate and validate the results. By combining the performance of complete WLAN/WiMAX antenna with MIMO antenna, the proposed MIMO antenna with wide operating frequencies 2.4 GHz. Thus the simulation results along with the given parameter values show that the antenna can simultaneously operate over WLAN, WiMAX and MIMO frequency bands

    Breaking the Transmitter-Receiver Isolation Barrier in Mobile Handsets with Spatial Duplexing

    Get PDF

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Fixed and reconfigurable multiband antennas

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel UniversityWith the current scenario of development of antennas in the wireless communication field, the need of compact multiband, multifunctional and cost effective antenna is on the rise. The objective of this thesis is to present fixed and reconfigurable techniques and methods for small and slim multiband antennas, which are applicable to serve modern small and slime wireless, mobile and cognitive radio applications. In the fixed designs, independent control of the operating frequencies is investigated to enhance the antennas capabilities and to give the designer an additional level of freedom to design the antenna for other bands easily without altering the shape or the size of the antenna. In addition, for mobile phone antenna, the effect of user’s hand and mobile phone housing are studied to be with minimum effect. Although fixed multiband antennas can widely be used in many different systems or devices, they lack flexibility to accommodate new services compared with reconfigurable antennas. A reconfigurable antenna can be considered as one of the key advances for future wireless communication transceivers. The advantage of using a reconfigurable antenna is to operate in multiband where the total antenna volume can be reused and therefore the overall size can be reduced. Moreover, the future of cell phones and other personal mobile devices require compact multiband antennas and smart antennas with reconfigurable features. Two different types of frequency reconfigurability are investigated in this thesis: switchable and tunable. In the switchable reconfigurability, PIN diodes have been used so the antenna’s operating frequencies can hop between different services whereas varactor diode with variable capacitance allow the antenna’s operating frequencies to be fine-tuned over the operating bands. With this in mind, firstly, a switchable compact and slim antenna with two patch elements is presented for cognitive radio applications where the antenna is capable of operating in wideband and narrow bands depending on the states of the switches. In addition to this, a switchable design is proposed to switch between single, dual and tri bands applications (using a single varactor diode to act as a switch at lower capacitance values) with some fine tuning capabilities for the first and third bands when the capacitance of the diode is further increased. Secondly, the earlier designed fixed antennas are modified to be reconfigurable with fine-tuning so that they can be used for more applications in both wireless and mobile applications with the ability to control the bands simultaneously or independently over a wide range. Both analytical and numerical methods are used to implement a realistic and functional design. Parametric analyses using simulation tools are performed to study critical parameters that may affect the designs. Finally, the simulated designs are fabricated, and measured results are presented that validate the design approaches

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    IEEE Access Special Section: Antenna and Propagation for 5G and Beyond

    Get PDF
    5G is not just the next evolution of 4G technology; it is a paradigm shift. “5G and beyond” will enable bandwidth in excess of 100s of Mb/s with a latency of less than 1 ms, in addition to providing connectivity to billions of devices. The verticals of 5G and beyond are not limited to smart transportation, industrial IoT, eHealth, smart cities, and entertainment services, transforming the way humanity lives, works, and engages with its environment

    Planar Wideband Antenna Designs for Wireless Applications in Portable Devices

    Full text link
    [EN] This paper summarizes the research that has been developed by the authors for the last six years, concerning the design of planar wideband antennas for portable devices. Basic structures combining electric and magnetic elements are proposed, which lead to antennas with large bandwidth. Thus, by using these basic structures, a polarization diversity antenna, a wideband antenna for DVB-H applications and a wideband MIMO antenna have been proposed for wireless applications in mobile terminals. Prototypes of all the antennas have been fabricated and measured at iTEAM and/or CWC facilities.This work was supported by the Spanish Ministerio de Economía y Competitividad under the projects TEC2010-20841-C04-01 and CSD2008-00068, and by the Finnish Funding Agency for Technology and Innovation (Tekes projects AATE and MIMOTA) and its industrial partners, EB, ETS Lindgren, Nokia Devices Oulu and Pulse Finland Inc. Mr. Sonkki also would like to thank the Nokia Foundation and the Infotech Oulu Doctoral Program for financially supporting his PhD studies.Antonino Daviu, E.; Sonkki, M.; Cabedo Fabrés, M.; Ferrando Bataller, M.; Salonen, ET.; Sánchez Escuderos, D.; Herranz Herruzo, JI.... (2014). Planar Wideband Antenna Designs for Wireless Applications in Portable Devices. Waves. 6:17-28. http://hdl.handle.net/10251/52905S1728
    corecore