9,688 research outputs found

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    TumorML: Concept and requirements of an in silico cancer modelling markup language

    No full text
    This paper describes the initial groundwork carried out as part of the European Commission funded Transatlantic Tumor Model Repositories project, to develop a new markup language for computational cancer modelling, TumorML. In this paper we describe the motivations for such a language, arguing that current state-of-the-art biomodelling languages are not suited to the cancer modelling domain. We go on to describe the work that needs to be done to develop TumorML, the conceptual design, and a description of what existing markup languages will be used to compose the language specification

    Enhancing Workflow with a Semantic Description of Scientific Intent

    Get PDF
    Peer reviewedPreprin

    Ontological Formalization for Workflow-based Computational Experiments

    Get PDF
    AbstractWorkflow-based computational experiment is a widespread way to organize distributed simulations. But the lack of IT experience and skills is the critical issue which scientists usually face with. By this paper we describe the reasoning capabilities, which are obtained from the proposed hierarchical structure for expert's knowledge formalization. The contribution of this paper is the ontological representation of a structure, which make end-users to deal with domain models compiled of fine-grained domain and infrastructural entities in order to generate an executable workflow as a result. A task of forecasting of storm surges and decision support for gates maneuvering is presented a use-case of the paper
    • 

    corecore