37 research outputs found

    Mutual-Guided Dynamic Network for Image Fusion

    Full text link
    Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction, i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: https://github.com/Guanys-dar/MGDN.Comment: ACMMM 2023 accepte

    Locally Non-rigid Registration for Mobile HDR Photography

    Full text link
    Image registration for stack-based HDR photography is challenging. If not properly accounted for, camera motion and scene changes result in artifacts in the composite image. Unfortunately, existing methods to address this problem are either accurate, but too slow for mobile devices, or fast, but prone to failing. We propose a method that fills this void: our approach is extremely fast---under 700ms on a commercial tablet for a pair of 5MP images---and prevents the artifacts that arise from insufficient registration quality

    High Dynamic Range Imaging with Context-aware Transformer

    Full text link
    Avoiding the introduction of ghosts when synthesising LDR images as high dynamic range (HDR) images is a challenging task. Convolutional neural networks (CNNs) are effective for HDR ghost removal in general, but are challenging to deal with the LDR images if there are large movements or oversaturation/undersaturation. Existing dual-branch methods combining CNN and Transformer omit part of the information from non-reference images, while the features extracted by the CNN-based branch are bound to the kernel size with small receptive field, which are detrimental to the deblurring and the recovery of oversaturated/undersaturated regions. In this paper, we propose a novel hierarchical dual Transformer method for ghost-free HDR (HDT-HDR) images generation, which extracts global features and local features simultaneously. First, we use a CNN-based head with spatial attention mechanisms to extract features from all the LDR images. Second, the LDR features are delivered to the Hierarchical Dual Transformer (HDT). In each Dual Transformer (DT), the global features are extracted by the window-based Transformer, while the local details are extracted using the channel attention mechanism with deformable CNNs. Finally, the ghost free HDR image is obtained by dimensional mapping on the HDT output. Abundant experiments demonstrate that our HDT-HDR achieves the state-of-the-art performance among existing HDR ghost removal methods.Comment: 8 pages, 5 figure

    Alignment-free HDR Deghosting with Semantics Consistent Transformer

    Full text link
    High dynamic range (HDR) imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output. The essence is to leverage the contextual information, including both dynamic and static semantics, for better image generation. Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion. However, there is no research on jointly leveraging the dynamic and static context in a simultaneous manner. To delve into this problem, we propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules in the network. The spatial attention aims to deal with the intra-image correlation to model the dynamic motion, while the channel attention enables the inter-image intertwining to enhance the semantic consistency across frames. Aside from this, we introduce a novel realistic HDR dataset with more variations in foreground objects, environmental factors, and larger motions. Extensive comparisons on both conventional datasets and ours validate the effectiveness of our method, achieving the best trade-off on the performance and the computational cost

    YDA görĂŒntĂŒ gölgeleme gidermede geliƟmiƟlik seviyesi ve YDA görĂŒntĂŒler için nesnel bir gölgeleme giderme kalite metriği.

    Get PDF
    Despite the emergence of new HDR acquisition methods, the multiple exposure technique (MET) is still the most popular one. The application of MET on dynamic scenes is a challenging task due to the diversity of motion patterns and uncontrollable factors such as sensor noise, scene occlusion and performance concerns on some platforms with limited computational capability. Currently, there are already more than 50 deghosting algorithms proposed for artifact-free HDR imaging of dynamic scenes and it is expected that this number will grow in the future. Due to the large number of algorithms, it is a difficult and time-consuming task to conduct subjective experiments for benchmarking recently proposed algorithms. In this thesis, first, a taxonomy of HDR deghosting methods and the key characteristics of each group of algorithms are introduced. Next, the potential artifacts which are observed frequently in the outputs of HDR deghosting algorithms are defined and an objective HDR image deghosting quality metric is presented. It is found that the proposed metric is well correlated with the human preferences and it may be used as a reference for benchmarking current and future HDR image deghosting algorithmsPh.D. - Doctoral Progra

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. ZunĂ€chst prĂ€sentieren wir iterative Schemata, die sich gut fĂŒr solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der SchlĂŒssel fĂŒr eine vielseitige Methode, die gute Ergebnisse fĂŒr zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, BildentfĂ€rbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, prĂ€sentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenĂŒber starken BeleuchtungsĂ€nderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. ZusĂ€tzliches Wissen ĂŒber die Belichtungsreihe ermöglicht uns, die erste vollstĂ€ndig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final prĂ€sentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusĂ€tzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. ZunĂ€chst prĂ€sentieren wir iterative Schemata, die sich gut fĂŒr solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der SchlĂŒssel fĂŒr eine vielseitige Methode, die gute Ergebnisse fĂŒr zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, BildentfĂ€rbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, prĂ€sentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenĂŒber starken BeleuchtungsĂ€nderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. ZusĂ€tzliches Wissen ĂŒber die Belichtungsreihe ermöglicht uns, die erste vollstĂ€ndig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final prĂ€sentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusĂ€tzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst
    corecore