249 research outputs found

    Developing large-scale field-programmable analog arrays for rapid prototyping

    Get PDF
    Field-programmable analog arrays (FPAAs) provide a method for rapidly prototyping analog systems. While currently available FPAAs vary in architecture and interconnect design, they are often limited in size and flexibility. For FPAAs to be as useful and marketable as modern digital reconfigurable devices, new technologies must be explored to provide area efficient, accurately programmable analog circuitry that can be easily integrated into a larger digital/mixed signal system. By leveraging recent advances in floating gate transistors, a new generation of FPAAs are achievable that will dramatically advance the current state of the art in terms of size, functionality, and flexibility

    1.2V Energy-Efficient Wireless CMOS Potentiostat for Amperometric Measurements

    Get PDF
    Wireless biosensors are playing a pivotal role in health monitoring, disease detection and management. The development of wireless biosensor nodes and networks strongly relies on the design of novel low-power, low-cost and flexible CMOS sensor readouts. This paper presents a CMOS potentiostat that integrates a control amplifier, a dual-slope ADC and a wireless unit on the same chip. It implements a novel time-based readout scheme, whereby the counter of the dual-slope ADC is moved to the receiver and the sensor current is encoded in the timing between two wireless pulses transmitted via pulse-harmonic modulation across an inductive link. Measured results show that the potentiostat chip can resolve a minimum input current of 10pA at a sampling frequency of 125 Hz and a power consumption of 12 μW

    Analysis of Current Conveyor based Switched Capacitor Circuits for Application in ∆Σ Modulators

    Get PDF
    The reduction in supply voltage, loss of dynamic range and increased noise prevent the analog circuits from taking advantage of advanced technologies. Therefore the trend is to move all signal processing tasks to digital domain where advantages of technology scaling can be used. Due to this, there exists a need for data converters with large signal bandwidths, higher speeds and greater dynamic range to act as an interface between real world analog and digital signals. The Delta Sigma (∆Σ) modulator is a data converter that makes use of large sampling rates and noise shaping techniques to achieve high resolution in the band of interest. The modulator consists of analog integrators and comparators which create a modulated digital bit stream whose average represents the input value. Due to their simplicity, they are popular in narrow band receivers, medical and sensor applications. However Operational Amplifiers (Op-Amps) or Operational Transconductance Amplifiers (OTAs), which are commonly used in data converters, present a bottleneck. Due to low supply voltages, designers rely on folded cascode, multistage cascade and bulk driven topologies for their designs. Although the two stage or multistage cascade topologies offer good gain and bandwidth, they suffer from stability problems due to multiple stages and feedback requiring large compensation capacitors. Therefore other low voltage Switched-Capacitor (SC) circuit techniques were developed to overcome these problems, based on inverters, comparators and unity gain buffers. In this thesis we present an alternative approach to design of ∆Σ modulators using Second Generation Current Conveyors (CCIIs). The important feature of these modulators is the replacement of the traditional Op-Amp based SC integrators with CCII based SC integrators. The main design issues such as the effect of the non-idealities in the CCIIs are considered in the operation of SC circuits and solutions are proposed to cancel them. Design tradeoffs and guidelines for various components of the circuit are presented through analysis of existing and the proposed SC circuits. A two step adaptive calibration technique is presented which uses few additional components to measure the integrator input output characteristic and linearize it for providing optimum performance over a wide range of sampling frequencies while maintaining low power and area. The presented CCII integrator and calibration circuit are used in the design of a 4th order (2-2 cascade) ∆Σ modulator which has been fabricated in UMC 90nm/1V technology through Europractice. Experimental values for Signal to Noise+Distortion Ratio (SNDR), Dynamic Range (DR) and Figure Of Merit (FOM) show that the modulator can compete with state of art reconfigurable Discrete-Time (DT) architectures while using lower gain stages and less design complexity

    Realization of DVCCTA Based Versatile Modulator

    Get PDF
    A Differential Voltage Current Conveyor Transconductance Amplifier (DVCCTA) based versatile modulator is proposed which can work as an amplitude modulator, frequency modulator, delta modulator, and sigma delta modulator. The modulator operational scheme uses pulse generator as a core and its output is used as carrier signal. A DVCCTA based pulse generator is proposed first and subsequently configured as different modulators. Compact realization is the key feature of the proposed circuit as it uses two DVCCTA; a grounded resistor and a grounded capacitor hence are appropriate for IC realization. The functionality of the proposed circuit is verified through SPICE simulations using TSMC 0.25 μm CMOS process model parameters. The performance parameters such as power dissipation and noise for various modulator schemes are also obtained

    Study of Adjustable Gains for Control of Oscillation Frequency and Oscillation Condition in 3R-2C Oscillator

    Get PDF
    An idea of adjustable gain in order to obtain controllable features is very useful for design of tuneable oscillators. Several active elements with adjustable properties (current and voltage gain) are discussed in this paper. Three modified oscillator conceptions that are quite simple, directly electronically adjustable, providing independent control of oscillation condition and frequency were designed. Positive and negative aspects of presented method of control are discussed. Expected assumptions of adjustability are verified experimentally on one of the presented solution

    Power-efficient current-mode analog circuits for highly integrated ultra low power wireless transceivers

    Get PDF
    In this thesis, current-mode low-voltage and low-power techniques have been applied to implement novel analog circuits for zero-IF receiver backend design, focusing on amplification, filtering and detection stages. The structure of the thesis follows a bottom-up scheme: basic techniques at device level for low voltage low power operation are proposed in the first place, followed by novel circuit topologies at cell level, and finally the achievement of new designs at system level. At device level the main contribution of this work is the employment of Floating-Gate (FG) and Quasi-Floating-Gate (QFG) transistors in order to reduce the power consumption. New current-mode basic topologies are proposed at cell level: current mirrors and current conveyors. Different topologies for low-power or high performance operation are shown, being these circuits the base for the system level designs. At system level, novel current-mode amplification, filtering and detection stages using the former mentioned basic cells are proposed. The presented current-mode filter makes use of companding techniques to achieve high dynamic range and very low power consumption with for a very wide tuning range. The amplification stage avoids gain bandwidth product achieving a constant bandwidth for different gain configurations using a non-linear active feedback network, which also makes possible to tune the bandwidth. Finally, the proposed current zero-crossing detector represents a very power efficient mixed signal detector for phase modulations. All these designs contribute to the design of very low power compact Zero-IF wireless receivers. The proposed circuits have been fabricated using a 0.5μm double-poly n-well CMOS technology, and the corresponding measurement results are provided and analyzed to validate their operation. On top of that, theoretical analysis has been done to fully explore the potential of the resulting circuits and systems in the scenario of low-power low-voltage applications.Programa Oficial de Doctorado en Tecnologías de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio
    corecore