24 research outputs found

    Novel a‐Si:H TFT pixel circuit for electrically stable top‐anode light‐emitting AMOLEDs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92120/1/1.2770853.pd

    On variability and reliability of poly-Si thin-film transistors

    Get PDF
    In contrast to conventional bulk-silicon technology, polysilicon (poly-Si) thin-film transistors (TFTs) can be implanted in flexible substrate and can have low process temperature. These attributes make poly-Si TFT technology more attractive for new applications, such as flexible displays, biosensors, and smart clothing. However, due to the random nature of grain boundaries (GBs) in poly-Si film and self-heating enhanced negative bias temperature instability (NBTI), the variability and reliability of poly-Si TFTs are the main obstacles that impede the application of poly-Si TFTs in high-performance circuits. The primary focus of this dissertation is to develop new design methodologies and modeling techniques for facilitating new applications of poly-Si TFT technology. In order to do that, a physical model is first presented to characterize the GB-induced transistor threshold voltage (V th)variations considering not only the number but also the position and orientation of each GB in 3-D space. The fast computation time of the proposed model makes it suitable for evaluation of GB-induced transistor Vthvariation in the early design phase. Furthermore, a self-consistent electro-thermal model that considers the effects of device geometry, substrate material, and stress conditions on NBTI is proposed. With the proposed modeling methodology, the significant impacts of device geometry, substrate, and supply voltage on NBTI in poly-Si TFTs are shown. From a circuit design perspective, a voltage programming pixel circuit is developed for active-matrix organic light emitting diode (AMOLED) displays for compensating the shift of Vth and mobility in driver TFTs as well as compensating the supply voltage degradation. In addition, a self-repair design methodology is proposed to compensate the GB-induced variations for liquid crystal displays (LCDs) and AMOLED displays. Based on the simulation results, the proposed circuit can decrease the required supply voltage by 20% without performance and yield degradation. In the final section of this dissertation, an optimization methodology for circuit-level reliability tests is explored. To effectively predict circuit lifetime, accelerated aging (i.e. elevated voltage and temperature) is commonly applied in circuit-level reliability tests, such as constant voltage stress (CVS) and ramp voltage stress (RVS) tests. However, due to the accelerated aging, shifting of dominant degradation mechanism might occur leading to the wrong lifetime prediction. To get around this issue, we proposed a technique to determine the proper stress range for accelerated aging tests

    Amorphous Silicon Thin Film Transistor Models and Pixel Circuits for AMOLED Displays

    Get PDF
    Hydrogenated amorphous Silicon (a-Si:H) Thin Film Transistor (TFT) has many advantages and is one of the suitable choices to implement Active Matrix Organic Light-Emitting Diode (AMOLED) displays. However, the aging of a-Si:H TFT caused by electrical stress affects the stability of pixel performance. To solve this problem, following aspects are important: (1) compact device models and parameter extraction methods for TFT characterization and circuit simulation; (2) a method to simulate TFT aging by using circuit simulator so that its impact on circuit performance can be investigated by using circuit simulation; and (3) novel pixel circuits to compensate the impact of TFT aging on circuit performance. These challenges are addressed in this thesis. A compact device model to describe the static and dynamic behaviors of a-Si:H TFT is presented. Several improvements were made for better accuracy, scalability, and convergence of TFT model. New parameter extraction methods with improved accuracy and consistency were also developed. The improved compact TFT model and new parameter extraction methods are verified by measurement results. Threshold voltage shift (∆Vt) over stress time is the primary aging behavior of a-Si:H TFT under voltage stress. Circuit-level aging simulation is very useful in investigating and optimizing circuit stability. Therefore, a simulation method was developed for circuit-level ∆Vt simulation. Besides, a ∆Vt model which is compatible to circuit simulator was developed. The proposed method and model are verified by measurement results. A novel pixel circuit using a-Si:H TFTs was developed to improve the stability of OLED drive current over stress time. The ∆Vt of drive TFT caused by voltage stress is compensated by an incremental gate voltage generated by utilizing a ∆Vt-dependent charge transfer from drive TFT to a TFT-based Metal-Insulator-Semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of drive TFT to improve OLED drive current. The effectiveness of the proposed pixel circuit is verified by simulation and measurement results. The proposed pixel circuit is also compared to several conventional pixel circuits.4 month

    Amorphous Silicon Thin Film Transistor Models and Pixel Circuits for AMOLED Displays

    Get PDF
    Hydrogenated amorphous Silicon (a-Si:H) Thin Film Transistor (TFT) has many advantages and is one of the suitable choices to implement Active Matrix Organic Light-Emitting Diode (AMOLED) displays. However, the aging of a-Si:H TFT caused by electrical stress affects the stability of pixel performance. To solve this problem, following aspects are important: (1) compact device models and parameter extraction methods for TFT characterization and circuit simulation; (2) a method to simulate TFT aging by using circuit simulator so that its impact on circuit performance can be investigated by using circuit simulation; and (3) novel pixel circuits to compensate the impact of TFT aging on circuit performance. These challenges are addressed in this thesis. A compact device model to describe the static and dynamic behaviors of a-Si:H TFT is presented. Several improvements were made for better accuracy, scalability, and convergence of TFT model. New parameter extraction methods with improved accuracy and consistency were also developed. The improved compact TFT model and new parameter extraction methods are verified by measurement results. Threshold voltage shift (∆Vt) over stress time is the primary aging behavior of a-Si:H TFT under voltage stress. Circuit-level aging simulation is very useful in investigating and optimizing circuit stability. Therefore, a simulation method was developed for circuit-level ∆Vt simulation. Besides, a ∆Vt model which is compatible to circuit simulator was developed. The proposed method and model are verified by measurement results. A novel pixel circuit using a-Si:H TFTs was developed to improve the stability of OLED drive current over stress time. The ∆Vt of drive TFT caused by voltage stress is compensated by an incremental gate voltage generated by utilizing a ∆Vt-dependent charge transfer from drive TFT to a TFT-based Metal-Insulator-Semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of drive TFT to improve OLED drive current. The effectiveness of the proposed pixel circuit is verified by simulation and measurement results. The proposed pixel circuit is also compared to several conventional pixel circuits.4 month

    Amorphous In-Ga-Zn-O Thin Film Transistors for Active-Matrix Organic Light-Emitting Displays.

    Full text link
    Active-matrix organic light-emitting display (AMOLED) is now generally viewed as the next generation display because of its vivid color, high contrast ratio, thin/light module, and low energy consumption. So far, most reported pixel circuits are either based on low temperature polysilicon (LTPS) thin film transistors (TFTs) or hydrogenated amorphous silicon (a-Si:H) TFTs. Both backplane technologies have their own shortcomings, such as nonuniformity of LTPS TFTs, low field-effect mobility and threshold voltage instability of a-Si:H TFTs. As a result, TFTs based on other semiconductor materials have been explored as an alternative approach to realize reliable, high resolution AMOLEDs. Among all, amorphous In-Ga-Zn-O (a- IGZO) TFTs possess certain advantages including visible transparency, low processing temperature, uniformity over large area, and good electrical performance, which make them very attractive for AMOLEDs. The focus of this work has been to provide a more thorough understanding of the device performance of a-IGZO TFTs, along with the underlying semiconductor physics and their possible application to AMOLEDs. Firstly, the electronic structure of crystalline In-Ga-Zn-O was studied by ab initio quantum mechanics calculation. Then the electrical properties of a-IGZO TFTs were described, including the gate voltage dependent field-effect mobility and source/drain contact resistance. The operation principles of a-IGZO TFTs were further investigated by the channel region surface potential profile obtained by scanning Kelvin probe microscopy. The effect of temperature on the electrical properties of a-IGZO TFTs was investigated. The thermally activated drain current was explored, and the density of deep states profile was calculated from measured data. Current temperature stress measurements were performed on a-IGZO TFTs. Several factors were considered when investigating the electrically stability of the devices, including the stress time, stress temperature, stress current, and TFT biasing conditions. Finally, a-IGZO TFT SPICE model was developed based on the RPI a-Si:H TFT model. Several voltage- and current-programmed AMOLED pixel circuits were simulated. The effect of threshold voltage variation on the pixel circuit performance was investigated, and the potential advantages of using a-IGZO TFTs were discussed.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/77902/1/charchic_1.pd

    Wide Bandwidth - High Accuracy Control Loops in the presence of Slow Varying Signals and Applications in Active Matrix Organic Light Emitting Displays and Sensor Arrays

    Get PDF
    This dissertation deals with the problems of modern active matrix organic light-emitting diode AMOLED display back-plane drivers and sensor arrays. The research described here, aims to classify recently utilized compensation techniques into distinct groups and further pinpoint their advantages and shortcomings. Additionally, a way of describing the loops as mathematical constructs is utilized to derive new circuits from the analog design perspective. A novel principle on display driving is derived by observing those mathematical control loop models and it is analyzed and evaluated as a novel way of pixel driving. Specifically, a new feedback current programming architecture and method is described and validated through experiments, which is compatible with AMOLED displays having the two transistor one capacitor (2T1C) pixel structure. The new pixel programming approach is compatible with all TFT technologies and can compensate for non-uniformities in both threshold voltage and carrier mobility of the pixel OLED drive TFT. Data gathered show that a pixel drive current of 20 nA can be programmed in less than 10usec. This new approach can be implemented within an AMOLED external or integrated display data driver. The method to achieve robustness in the operation of the loop is also presented here, observed through a series of measurements. All the peripheral blocks implementing the design are presented and analyzed through simulations and verified experimentally. Sources of noise are identified and eliminated, while new techniques for better isolation from digital noise are described and tested on a newly fabricated driver. Multiple versions of the new proposed circuit are outlined, simulated, fabricated and measured to evaluate their performance.A novel active matrix array approach suitable for a compact multi-channel gas sensor platform is also described. The proposed active matrix sensor array utilizes an array of P-i-N diodes each connected in series with an Inter-Digitated Electrode (IDE). The functionality of 8x8 and 16x16 sensor arrays measured through external current feedback loops is also presented for the 8x8 arrays and the detection of ammonia (NH3) and chlorine (Cl2) vapor sources is demonstrated

    Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays

    Get PDF
    Thin film transistor (TFT) backplanes are being continuously researched for new applications such as active-matrix organic light emitting diode (AMOLED) displays, sensors, and x-ray imagers. However, the circuits implemented in presently available fabrication technologies including poly silicon (poly-Si), hydrogenated amorphous silicon (a-Si:H), and organic semiconductor, are prone to spatial and/or temporal non-uniformities. While current-programmed active matrix (AM) can tolerate mismatches and non-uniformity caused by aging, the long settling time is a significant limitation. Consequently, acceleration schemes are needed and are proposed to reduce the settling time to 20 ”s. This technique is used in the development of a pixel circuit and system for biomedical imager and sensor. Here, a metal-insulator-semiconductor (MIS) capacitor is adopted for adjustment and boost of the circuit gain. Thus, the new pixel architecture supports multi-modality imaging for a wide range of applications with various input signal intensities. Also, for applications with lower current levels, a fast current-mode line driver is developed based on positive feedback which controls the effect of the parasitic capacitance. The measured settling time of a conventional current source is around 2 ms for a 100-nA input current and 200-pF parasitic capacitance whereas it is less than 4 Όs for the driver presented here. For displays needed in mobile devices such as cell phones and DVD players, another new driving scheme is devised that provides for a high temporal stability, low-power consumption, high tolerance of temperature variations, and high resolution. The performance of the new driving scheme is demonstrated in a 9-inch fabricated display intended for DVD players. Also, a multi-modal imager pixel circuit is developed using this technique to provide for gain-adjustment capability. Here, the readout operation is not destructive, enabling the use of low-cost readout circuitry and noise reduction techniques. In addition, a highly stable and reliable driving scheme, based on step calibration is introduced for high precision displays and imagers. This scheme takes advantage of the slow aging of the electronics in the backplane to simplify the drive electronics. The other attractive features of this newly developed driving scheme are its simplicity, low-power consumption, and fast programming critical for implementation of large-area and high-resolution active matrix arrays for high precision

    Organic Thin Film Transistor Integration

    Get PDF
    This thesis examines strategies to exploit existing materials and techniques to advance organic thin film transistor (OTFT) technology in device performance, device manufacture, and device integration. To enhance device performance, optimization of plasma enhanced chemical vapor deposited (PECVD) gate dielectric thin film and investigation of interface engineering methodologies are explored. To advance device manufacture, OTFT fabrication strategies are developed to enable organic circuit integration. Progress in device integration is achieved through demonstration of OTFT integration into functional circuits for applications such as active-matrix displays and radio frequency identification (RFID) tags. OTFT integration schemes featuring a tailored OTFT-compatible photolithography process and a hybrid photolithography-inkjet printing process are developed. They enable the fabrication of fully-patterned and fully-encapsulated OTFTs and circuits. Research on improving device performance of bottom-gate bottom-contact poly(3,3'''-dialkyl-quarter-thiophene) (PQT-12) OTFTs on PECVD silicon nitride (SiNx) gate dielectric leads to the following key conclusions: (a) increasing silicon content in SiNx gate dielectric leads to enhancement in field-effect mobility and on/off current ratio; (b) surface treatment of SiNx gate dielectric with a combination of O2 plasma and octyltrichlorosilane (OTS) self-assembled monolayer (SAM) delivers the best OTFT performance; (c) an optimal O2 plasma treatment duration exists for attaining highest field-effect mobility and is linked to a “turn-around” effect; and (d) surface treatment of the gold (Au) source/drain contacts by 1-octanethiol SAM limits mobility and should be omitted. There is a strong correlation between the electrical characteristics and the interfacial characteristics of OTFTs. In particular, the device mobility is influenced by the interplay of various interfacial mechanisms, including surface energy, surface roughness, and chemical composition. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. A major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling use of the well-established PECVD infrastructure, yet not compromising the performance of electronics
    corecore