2,866 research outputs found

    Space-Capable Long and Thin Continuum Robotic Cable

    Get PDF
    Design of continuum robots, i.e. robots with continuous backbones, has been an active area of research in robotics for minimally invasive surgery, search and rescue, object manipulation, etc. Along the same lines, NASA developed Tendril , the first long and thin continuum robot of its kind, intended for in-space inspection applications. The thesis starts with describing and discussing the key disadvantages of the current state of the art mechanical design of Tendril\u27\u27 producing undesirable effects during operation. It then includes the design specifics of a novel concept for construction of a next generation long and thin, space-cable, multi-section, continuum cable-like robot, with a modified mechanical design for better performance. The new design possesses key features including controllable bending along its entire length, local compression and a compact actuation package. This new design is detailed in two versions. The first is a planar variant (suited for a 2D workspace), explaining the principle which allows the cable robot to achieve the above mentioned features. It is followed by a refined spatial version (suited for 3D workspace), where the functional characteristics are achieved within the desired aspect ratio of thin (less than 1 cm diameter) and relatively longer length (more than 100 cm) of the robotic cable. A new forward kinematic model is then developed extending the established models for constant-curvature continuum robots, to account for the new design feature of controllable compression (in the hardware) and is validated by performing experiments with the robot in (2D) planar and (3D) spatial scenarios. This new model is found to be effective as a baseline to predict the performance of such a long and thin continuum cable\u27\u27 robot

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Actuation Technologies for Soft Robot Grippers and Manipulators: A Review

    Get PDF
    Purpose of Review The new paradigm of soft robotics has been widely developed in the international robotics community. These robots being soft can be used in applications where delicate yet effective interaction is necessary. Soft grippers and manipulators are important, and their actuation is a fundamental area of study. The main purpose of this work is to provide readers with fast references to actuation technologies for soft robotic grippers in relation to their intended application. Recent Findings The authors have surveyed recent findings on actuation technologies for soft grippers. They presented six major kinds of technologies which are either used independently for actuation or in combination, e.g., pneumatic actuation combined with electro-adhesion, for certain applications. Summary A review on the latest actuation technologies for soft grippers and manipulators is presented. Readers will get a guide on the various methods of technology utilization based on the application

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    A Novel Concept for Safe, Stiffness-Controllable Robot Links

    Get PDF
    The recent decade has seen an astounding increase of interest and advancement in a new field of robotics, aimed at creating structures specifically for the safe interaction with humans. Softness, flexibility and variable stiffness in robotics have been recognised as highly desirable characteristics for many applications. A number of solutions were proposed ranging from entirely soft robots (such as those composed mainly from soft materials such as silicone), via flexible continuum and snake-like robots, to rigid-link robots enhanced by joints that exhibit an elastic behaviour either implemented in hardware or achieved purely by means of intelligent control. Although these are very good solutions paving the path to safe human-robot interaction, we propose here a new approach which focuses on creating stiffness controllability for the linkages between the robot joints. This paper proposes a replacement for the traditionally rigid robot link – the new link is equipped with an additional capability of stiffness controllability. With this added feature, a robot can accurately carry out manipulation tasks (high stiffness), but can virtually instantaneously reduce its stiffness when a human is nearby or in contact with the robot. The key point of the invention described here is a robot link made of an airtight chamber formed by a soft and flexible, but high-strain resistant combination of a plastic mesh and silicone wall. Inflated with air to a high pressure, the mesh-silicone chamber behaves like a rigid link; reducing the air pressure, softens the link and rendering the robot structure safe. This paper investigates a number of our link prototypes and shows the feasibility of the new concept. Stiffness tests have been performed, showing that a significant level of stiffness can be achieved - up to 40 N reaction force along the axial direction, for a 25 mm diameter sample at 60 kPa, at an axial deformation of 5 mm. The results confirm that this novel concept to linkages for robot manipulators exhibits the beam-like behaviour of traditional rigid links when fully pressurised and significantly reduced stiffness at low pressure. The proposed concept has the potential to easily create safe robots, augmenting traditional robot designs

    Novel Vine-like Continuum Robot for Environmental Exploration Applications

    Get PDF
    This thesis details a new design and novel operational strategies for nature inspired, thin tendril continuum robots. Instead of taking inspiration for robot design from insects or animals, the novel approach to continuum robotics herein takes inspiration and adapts operational concepts from plant life. In particular, an innovative strategy is developed which mimics behaviors observed in vines and other climbing plants. Specifically, a tendril robot with prickles was developed and deployed to actively seek environmental contact, exploiting the mechanical advantage gained by bracing against the environment using the prickles. The resulting performance enhancements over previously developed smooth backbone tendril robot designs, and use of strategies that do not attempt to interact with the environment are empirically demonstrated with the new robot prototype. Results of further experiments suggest applications in which the new design and approach could prove useful to the scientific and wider communities

    Gamified Music Learning System with VR Force Feedback for Rehabilitation

    Get PDF
    Many conditions cause loss of coordination and motor capabilities in the extremities. One such condition is stroke, which affects approximately 15 million people worldwide each year. [1] Many robotic systems have been developed to assist in the physical and neurological rehabilitation of patients who have suffered a stroke. As a result of this project an actuator to be used for hand rehabilitation using visual processing and Bowden cables was designed. This project aims to use the design of the actuator combined with gamification elements to create an interface to be used in future robotic rehabilitation systems as well as address the compliance problem found in rehabilitation

    Gamified Music Learning System with VR Force Feedback for

    Get PDF
    Many conditions cause loss of coordination and motor capabilities in the extremities. One such condition is stroke, which affects approximately 15 million people worldwide each year. Many robotic systems have been developed to assist in the physical and neurological rehabilitation of patients who have suffered a stroke. As a result of this project an actuator, to be used for hand rehabilitation, by means of visual processing and Bowden cables, was designed. This project aims to use the design of the actuator combined with gamification elements to create an interface to be used in future robotic rehabilitation systems as well as address the compliance problem found in rehabilitation
    • …
    corecore