312 research outputs found

    Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management?

    Get PDF
    With the advent of big data, data center applications are processing vast amounts of unstructured and semi-structured data, in parallel on large clusters, across hundreds to thousands of nodes. The highest performance for these batch big data workloads is achieved using expensive network equipment with large buffers, which accommodate bursts in network traffic and allocate bandwidth fairly even when the network is congested. Throughput-sensitive big data applications are, however, often executed in the same data center as latency-sensitive workloads. For both workloads to be supported well, the network must provide both maximum throughput and low latency. Progress has been made in this direction, as modern network switches support Active Queue Management (AQM) and Explicit Congestion Notifications (ECN), both mechanisms to control the level of queue occupancy, reducing the total network latency. This paper is the first study of the effect of Active Queue Management on both throughput and latency, in the context of Hadoop and the MapReduce programming model. We give a quantitative comparison of four different approaches for controlling buffer occupancy and latency: RED and CoDel, both standalone and also combined with ECN and DCTCP network protocol, and identify the AQM configurations that maintain Hadoop execution time gains from larger buffers within 5%, while reducing network packet latency caused by bufferbloat by up to 85%. Finally, we provide recommendations to administrators of Hadoop clusters as to how to improve latency without degrading the throughput of batch big data workloads.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Will TCP work in mmWave 5G Cellular Networks?

    Full text link
    The vast available spectrum in the millimeter wave (mmWave) bands offers the possibility of multi-Gbps data rates for fifth generation (5G) cellular networks. However, mmWave capacity can be highly intermittent due to the vulnerability of mmWave signals to blockages and delays in directional searching. Such highly variable links present unique challenges for adaptive control mechanisms in transport layer protocols and end-to-end applications. This paper considers the fundamental question of whether TCP - the most widely used transport protocol - will work in mmWave cellular systems. The paper provides a comprehensive simulation study of TCP considering various factors such as the congestion control algorithm, including the recently proposed TCP BBR, edge vs. remote servers, handover and multi- connectivity, TCP packet size and 3GPP-stack parameters. We show that the performance of TCP on mmWave links is highly dependent on different combinations of these parameters, and identify the open challenges in this area.Comment: 7 pages, 4 figures, 2 tables. To be published in the IEEE Communication Magazin

    FavorQueue: A parameterless active queue management to improve TCP traffic performance

    Get PDF
    This paper presents and analyzes the implementation of a novel active queue management (AQM) named FavorQueue that aims to improve delay transfer of short lived TCP flows over best-effort networks. The idea is to dequeue packets that do not belong to a flow previously enqueued first. The rationale is to mitigate the delay induced by long-lived TCP flows over the pace of short TCP data requests and to prevent dropped packets at the beginning of a connection and during recovery period. Although the main target of this AQM is to accelerate short TCP traffic, we show that FavorQueue does not only improve the performance of short TCP traffic but also improves the performance of all TCP traffic in terms of drop ratio and latency whatever the flow size. In particular, we demonstrate that FavorQueue reduces the loss of a retransmitted packet, decreases the number of dropped packets recovered by RTO and improves the latency up to 30% compared to DropTail. Finally, we show that this scheme remains compliant with recent TCP updates such as the increase of the initial slow-start value

    An Optimized Clogging Manage and Fault Executive System

    Get PDF
    In this paper, a new OCMFES congestion control mechanism is introduced in multi-homing mode. Congestion in each route can be avoided or can be controlled, based on an Active Queue Management (AQM) method. Also, routers compute probability of congestion for the sources on the paths and then notify them. Therefore, the sources can adjust their sending rates on each path effectively and if necessary, can switch to an alternate path to prevent congestion. Simulations have been conducted with Opnet linked with NS2. The simulation shows that the new method can decrease packet loss, increase the amount of transmissions and stabilize queue length, as compared with standard OCMFES. Keywords:  OCMFES; AQM; congestion control; sendin
    corecore