549 research outputs found

    A Novel High Linearity and Low Power Folded CMOS LNA for UWB Receivers

    Get PDF
    © 2017 World Scientific Publishing Company. Electronic version of an article published as Journal of Circuits, Systems and Computers, Vol. 27, No. 03, 1850047, https://doi.org/10.1142/S0218126618500470.This paper presents a high linearity and low power Low-Noise Amplifier (LNA) for Ultra-Wideband (UWB) receivers based on CHRT 0.18Όm CMOS technology. In this work, the folded topology is adopted in order to reduce the supply voltage and power consumption. Moreover, a band-pass LC filter is embedded in the folded-cascode circuit to extend bandwidth. The transconductance nonlinearity has a great impact on the whole LNA linearity performance under a low supply voltage. A post-distortion (PD) technique employing an auxiliary transistor is applied in the transconductance stage to improve the linearity. The post-layout simulation results indicate that the proposed LNA achieves a maximum power gain of 12.8dB. The input and output reflection coefficients both are lower than -10.0dB over 2.5~11.5GHz. The input third-order intercept point (IIP3) is 5.6dBm at 8GHz and the noise figure (NF) is lower than 4.0dB. The LNA consumes 5.4mW power under a 1V supply voltage.Peer reviewe

    High-performance wireless power and data transfer interface for implantable medical devices

    Get PDF
    D’importants progĂšs ont Ă©tĂ© rĂ©alisĂ©s dans le dĂ©veloppement des systĂšmes biomĂ©dicaux implantables grĂące aux derniĂšres avancĂ©es de la microĂ©lectronique et des technologies sans fil. NĂ©anmoins, ces appareils restent difficiles Ă  commercialier. Cette situation est due particuliĂšrement Ă  un manque de stratĂ©gies de design capable supporter les fonctionnalitĂ©s exigĂ©es, aux limites de miniaturisation, ainsi qu’au manque d’interface sans fil Ă  haut dĂ©bit fiable et faible puissance capable de connecter les implants et les pĂ©riphĂ©riques externes. Le nombre de sites de stimulation et/ou d’électrodes d’enregistrement retrouvĂ©s dans les derniĂšres interfaces cerveau-ordinateur (IMC) ne cesse de croĂźtre afin d’augmenter la prĂ©cision de contrĂŽle, et d’amĂ©liorer notre comprĂ©hension des fonctions cĂ©rĂ©brales. Ce nombre est appelĂ© Ă  atteindre un millier de site Ă  court terme, ce qui exige des dĂ©bits de donnĂ©es atteingnant facilement les 500 Mbps. Ceci Ă©tant dit, ces travaux visent Ă  Ă©laborer de nouvelles stratĂ©gies innovantes de conception de dispositifs biomĂ©dicaux implantables afin de repousser les limites mentionnĂ©es ci-dessus. On prĂ©sente de nouvelles techniques faible puissance beaucoup plus performantes pour le transfert d’énergie et de donnĂ©es sans fil Ă  haut dĂ©bit ainsi que l’analyse et la rĂ©alisation de ces derniĂšres grĂące Ă  des prototypes microĂ©lectroniques CMOS. Dans un premier temps, ces travaux exposent notre nouvelle structure multibobine inductive Ă  rĂ©sonance prĂ©sentant une puissance sans fil distribuĂ©e uniformĂ©ment pour alimenter des systĂšmes miniatures d’étude du cerveaux avec des models animaux en ilbertĂ© ainsi que des dispositifs mĂ©dicaux implantbles sans fil qui se caractĂ©risent par une capacitĂ© de positionnement libre. La structure propose un lien de rĂ©sonance multibobines inductive, dont le rĂ©sonateur principal est constituĂ© d’une multitude de rĂ©sonateurs identiques disposĂ©s dans une matrice de bobines carrĂ©es. Ces derniĂšres sont connectĂ©es en parallĂšle afin de rĂ©aliser des surfaces de puissance (2D) ainsi qu’une chambre d’alimentation (3D). La chambre proposĂ©e utilise deux matrices de rĂ©sonateurs de base, mises face Ă  face et connectĂ©s en parallĂšle afin d’obtenir une distribution d’énergie uniforme en 3D. Chaque surface comprend neuf bobines superposĂ©es, connectĂ©es en parallĂšle et rĂ©ailsĂ©es sur une carte de circuit imprimĂ© deux couches FR4. La chambre dispose d’un mĂ©canisme naturel de localisation de puissance qui facilite sa mise en oeuvre et son fonctionnement. En procĂ©dant ainsi, nous Ă©vitons la nĂ©cessitĂ© d’une dĂ©tection active de l’emplacement de la charge et le contrĂŽle d’alimentation. Notre approche permet Ă  cette surface d’alimentation unique de fournir une efficacitĂ© de transfert de puissance (PTE) de 69% et une puissance dĂ©livrĂ©e Ă  la charge (PDL) de 120 mW, pour une distance de sĂ©paration de 4 cm, tandis que le prototype de chambre complet fournit un PTE uniforme de 59% et un PDL de 100 mW en 3D, partout Ă  l’intĂ©rieur de la chambre avec un volume de chambre de 27 × 27 × 16 cm3. Une Ă©tape critique avant d’utiliser un dispositif implantable chez les humains consiste Ă  vĂ©rifier ses fonctionnalitĂ©s sur des sujets animaux. Par consĂ©quent, la chambre d’énergie sans fil conçue sera utilisĂ©e afin de caractĂ©riser les performances d’ une interface sans fil de transmisison de donnĂ©es dans un environnement rĂ©aliste in vivo avec positionement libre. Un Ă©metteur-rĂ©cepteur full-duplex (FDT) entiĂšrement intĂ©grĂ© qui se caractĂ©rise par sa faible puissance est conçu pour rĂ©aliser une interfaces bi-directionnelles (stimulation et enregistrement) avec des dĂ©bits asymĂ©triques: des taux de tramnsmission plus Ă©levĂ©s sont nĂ©cessaires pour l’enregistrement Ă©lectrophysiologique multicanal (signaux de liaison montante) alors que les taux moins Ă©levĂ©s sont utilisĂ©s pour la stimulation (les signaux de liaison descendante). L’émetteur (TX) et le rĂ©cepteur (RX) se partagent une seule antenne afin de rĂ©duire la taille de l’implant. L’émetteur utilise la radio ultra-large bande par impulsions (IR-UWB) basĂ©e sur l’approche edge combining et le RX utilise la bande ISM (Industrielle, Scientifique et MĂ©dicale) de frĂ©quence central 2.4 GHz et la modulation on-off-keying (OOK). Une bonne isolation (> 20 dB) est obtenue entre le TX et le RX grĂące Ă  1) la mise en forme les impulsions Ă©mises dans le spectre UWB non rĂ©glementĂ©e (3.1-7 GHz), et 2) le filtrage espace-efficace (Ă©vitant l’utilisation d’un circulateur ou d’un diplexeur) du spectre du lien de communication descendant directement au niveau de l’ amplificateur Ă  faible bruit (LNA). L’émetteur UWB 3.1-7 GHz utilise un e modultion OOK ainsi qu’une modulation par dĂ©placement de phase (BPSK) Ă  seulement 10.8 pJ / bits. Le FDT proposĂ© permet d’atteindre 500 Mbps de dĂ©bit de donnĂ©es en lien montant et 100 Mbps de dĂ©bit de donnĂ©es de lien descendant. Il est entiĂšrement intĂ©grĂ© dans un procĂ©dĂ© TSMC CMOS 0.18 um standard et possĂšde une taille totale de 0.8 mm2. La consommation totale d’énergie mesurĂ©e est de 10.4 mW (5 mW pour RX et 5.4 mW pour TX au taux de 500 Mbps).In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps)

    Analysis and Design of Wideband Low Noise Amplifier with Digital Control

    Get PDF
    The design issues in designing low noise amplifier (LNA) for Software-Defined-Radio (SDR) are reviewed. An inductor-less wideband low noise amplifier aiming at low frequency band (0.2-2GHz) for Software-Defined-Radio is presented. Shunt-shunt LNA with active feedback is used as the first stage which is carefully optimized for low noise and wide band applications. A digitally controlled second stage is employed to provide an additional 12dB gain control. A novel method is proposed to bypass the first stage without degrading input matching. This LNA is fabricated in a standard 0.18 um CMOS technology. The measurement result shows the proposed LNA has a gain range of 6dB-18dB at high gain mode and -12dB-0dB at low gain mode, as well as a –3dB bandwidth of 2GHz. The noise figure (NF) is 3.5-4.5dB in the high gain setting mode. It consumes 20mW from a 1.8V supply

    Timed array antenna system : application to wideband and ultra-wideband beamforming receivers

    Get PDF
    Antenna array systems have a broad range of applications in radio frequency (RF) and ultra-wideband (UWB) communications to receive/transmit electromagnetic waves from/to the sky. They can enhance the amplitude of the input signals, steer beams electronically, and reject interferences thanks to beamforming technique. In an antenna array beamforming system, delay cells with the tunable capability of delay amount compensate the relative delay of signals received by antennas. In fact, each antenna almost acts individually depending upon time delaying effects on the input signals. As a result, the delay cells are the basic elements of the beamforming systems. For this purpose, novel active true time delay (TTD) cells suitable for RF antenna arrays have been presented in this thesis. These active delay cells are based on 1st- and 2nd-order all-pass filters (APFs) and achieve quite a flat gain and delay within up to 10-GHz frequency range. Various techniques such as phase linearity and delay tunability have been accomplished to improve the design and performance. The 1st-order APF has been designed for a frequency range of 5 GHz, showing desirable frequency responses and linearity which is comparable with the state-of-the-art. This 1st-order APF is able to convert into a 2nd-order APF via adding a grounded capacitor. A compact 2nd-order APF using an active inductor has been also designed and simulated for frequencies up to 10 GHz. The active inductor has been utilized to tune the amount of delay and to reduce the on-chip size of the filter. In order to validate the performance of the delay cells, two UWB four-channel timed array beamforming receivers realized by the active TTD cells have been proposed. Each antenna channel exploits digitally controllable gain and delay on the input signal and demonstrates desirable gain and delay resolutions. The beamforming receivers have been designed for different UWB applications depending on their operating frequency ranges (that is, 3-5 and 3.1-10.6 GHz), and thus they have different system requirements and specifications. All the circuits and topologies presented in this dissertation have been designed in standard 180-nm CMOS technologies, featuring a unity gain frequency ( ft) up to 60 GHz.Els sistemes matricials d’antenes tenen una Ă mplia gamma d’aplicacions en radiofreqĂŒĂšncia (RF) i comunicacions de banda ultraampla (UWB) per rebre i transmetre ones electromagnĂštics. Poden millorar l’amplitud dels senyals d’entrada rebuts, dirigir els feixos electrĂČnicament i rebutjar les interferĂšncies grĂ cies a la tĂšcnica de formaciĂł de feixos (beamforming). En un sistema beamforming de matriu d’antenes, les cĂšl·lules de retard amb capacitat ajustable del retard, compensen aquest retard relatiu dels senyals rebuts per les diferents antenes. De fet, cada antena gairebĂ© actua individualment depenent dels efectes de retard de temps sobre el senyals d’entrada. Com a resultat, les cel·les de retard sĂłn els elements bĂ sics en el disseny dels actuals sistemes beamforming. Amb aquest propĂČsit, en aquesta tesi es presenten noves cĂšl·lules actives de retard en temps real (TTD, true time delay) adequades per a matrius d’antenes de RF. Aquestes cĂšl·lules de retard actives es basen en cĂšl·lules de primer i segon ordre passa-tot (APF), i aconsegueixen un guany i un retard força plans, en el rang de freqĂŒĂšncia de fins a 10 GHz. Diverses tĂšcniques com ara la linealitat de fase i la sintonitzaciĂł del retard s’han aconseguit per millorar el disseny i el rendiment. La cĂšl·lula APF de primer ordre s’ha dissenyat per a un rang de freqĂŒĂšncies de fins a 5 GHz, mostrant unes respostes freqĂŒencials i linealitat que sĂłn comparables amb l’estat de l’art actual. Aquestes cĂšl·lules APF de primer ordre es poden convertir en un APF de segon ordre afegint un condensador mĂ©s connectat a massa. TambĂ© s’ha dissenyat un APF compacte de segon ordre que utilitza una emulaciĂł d’inductor actiu per a freqĂŒĂšncies de treball de fins a 10 GHz. S’ha utilitzat l'inductor actiu per ajustar la quantitat de retard introduĂŻt i reduir les dimensions del filtre al xip. Per validar les prestacions de les cel·les de retard propostes, s’han proposat dos receptors beamforming basats en matrius d’antenes de 4 canals, realitzats por cĂšl·lules TTD actives. Cada canal d’antena aprofita el guany i el retard controlables digitalment aplicats al senyal d’entrada, i demostra resolucions de guany i retard desitjables. Els receptors beamforming s’han dissenyat per a diferents aplicacions UWB segons els seus rangs de freqĂŒĂšncies de funcionament (en aquest cas, 3-5 i 3,1-10,6 GHz) i, per tant, tenen diferents requisits i especificacions de disseny del sistema. Tots els circuits i topologies presentats en aquesta tesi s’han dissenyat en tecnologies CMOS estĂ ndards de 180 nm, amb una freqĂŒĂšncia de guany unitari (ft) de fins a 60 GHz.Postprint (published version

    Hardware Development of an Ultra-Wideband System for High Precision Localization Applications

    Get PDF
    A precise localization system in an indoor environment has been developed. The developed system is based on transmitting and receiving picosecond pulses and carrying out a complete narrow-pulse, signal detection and processing scheme in the time domain. The challenges in developing such a system include: generating ultra wideband (UWB) pulses, pulse dispersion due to antennas, modeling of complex propagation channels with severe multipath effects, need for extremely high sampling rates for digital processing, synchronization between the tag and receivers’ clocks, clock jitter, local oscillator (LO) phase noise, frequency offset between tag and receivers’ LOs, and antenna phase center variation. For such a high precision system with mm or even sub-mm accuracy, all these effects should be accounted for and minimized. In this work, we have successfully addressed many of the above challenges and developed a stand-alone system for positioning both static and dynamic targets with approximately 2 mm and 6 mm of 3-D accuracy, respectively. The results have exceeded the state of the art for any commercially available UWB positioning system and are considered a great milestone in developing such technology. My contributions include the development of a picosecond pulse generator, an extremely wideband omni-directional antenna, a highly directive UWB receiving antenna with low phase center variation, an extremely high data rate sampler, and establishment of a non-synchronized UWB system architecture. The developed low cost sampler, for example, can be easily utilized to sample narrow pulses with up to 1000 GS/s while the developed antennas can cover over 6 GHz bandwidth with minimal pulse distortion. The stand-alone prototype system is based on tracking a target using 4-6 base stations and utilizing a triangulation scheme to find its location in space. Advanced signal processing algorithms based on first peak and leading edge detection have been developed and extensively evaluated to achieve high accuracy 3-D localization. 1D, 2D and 3D experiments have been carried out and validated using an optical reference system which provides better than 0.3 mm 3-D accuracy. Such a high accuracy wireless localization system should have a great impact on the operating room of the future

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Ultra-Wideband RF Transceive

    Get PDF
    • 

    corecore