683 research outputs found

    Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

    Get PDF
    In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Wideband cyclostationary spectrum sensing and characterization for cognitive radios

    Get PDF
    Motivated by the spectrum scarcity problem, Cognitive Radios (CRs) have been proposed as a solution to opportunistically communicate over unused spectrum licensed to Primary users (PUs). In this context, the unlicensed Secondary users (SUs) sense the spectrum to detect the presence or absence of PUs, and use the unoccupied bands without causing interference to PUs. CRs are equipped with capabilities such as, learning, adaptability, and recongurability, and are spectrum aware. Spectrum awareness comes from spectrum sensing, and it can be performed using different techniques

    Compressive Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Spectrum sensing is the most important part in cognitive radios. Wideband spectrum sensing requires high speed and large data samples. It makes sampling process challenging and expensive. In this thesis, we propose wideband spectrum sensing for cognitive radio using compressive sensing to address challenges in sampling and data acquisition during spectrum sensing. Compressive sensing based spectrum sensing for a single network is extended to large frequency overlapping networks and joint reconstruction scheme is developed to enhance the performance at minimal cost. The joint sparsity in large networks is used to improve the compressive sensing reconstruction in large networks. Further, a novel compressive sensing method for binary signal is proposed. Unlike general compressive sensing solution based on optimization process, a simple, reliable and quick compressive sensing method for binary signal using bipartite graph, edge recovery and check-sum method is developed. The proposed models and methods have been verified, proved and compared with existing approaches through numerical analysis and simulations.School of Electrical & Computer Engineerin

    Collaborative spectrum sensing in cognitive radio networks

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated by government agencies. With the explosive emergence of wireless applications, the demands for the RF spectrum are constantly increasing. On the other hand, it has been reported that localised temporal and geographic spectrum utilisation efficiency is extremely low. Cognitive radio is an innovative technology designed to improve spectrum utilisation by exploiting those spectrum opportunities. This ability is dependent upon spectrum sensing, which is one of most critical components in a cognitive radio system. A significant challenge is to sense the whole RF spectrum at a particular physical location in a short observation time. Otherwise, performance degrades with longer observation times since the lagging response to spectrum holes implies low spectrum utilisation efficiency. Hence, developing an efficient wideband spectrum sensing technique is prime important. In this thesis, a multirate asynchronous sub-Nyquist sampling (MASS) system that employs multiple low-rate analog-to-digital converters (ADCs) is developed that implements wideband spectrum sensing. The key features of the MASS system are, 1) low implementation complexity, 2) energy-efficiency for sharing spectrum sensing data, and 3) robustness against the lack of time synchronisation. The conditions under which recovery of the full spectrum is unique are presented using compressive sensing (CS) analysis. The MASS system is applied to both centralised and distributed cognitive radio networks. When the spectra of the cognitive radio nodes have a common spectral support, using one low-rate ADC in each cognitive radio node can successfully recover the full spectrum. This is obtained by applying a hybrid matching pursuit (HMP) algorithm - a synthesis of distributed compressive sensing simultaneous orthogonal matching pursuit (DCS-SOMP) and compressive sampling matching pursuit (CoSaMP). Moreover, a multirate spectrum detection (MSD) system is introduced to detect the primary users from a small number of measurements without ever reconstructing the full spectrum. To achieve a better detection performance, a data fusion strategy is developed for combining sensing data from all cognitive radio nodes. Theoretical bounds on detection performance are derived for distributed cognitive radio nodes suffering from additive white Gaussian noise (AWGN), Rayleigh fading, and log-normal fading channels. In conclusion, MASS and MSD both have a low implementation complexity, high energy efficiency, good data compression capability, and are applicable to distributed cognitive radio networks

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Spectrum sensing for cognitive radio and radar systems

    Get PDF
    The use of the radio frequency spectrum is increasing at a rapid rate. Reliable and efficient operation in a crowded radio spectrum requires innovative solutions and techniques. Future wireless communication and radar systems should be aware of their surrounding radio environment in order to have the ability to adapt their operation to the effective situation. Spectrum sensing techniques such as detection, waveform recognition, and specific emitter identification are key sources of information for characterizing the surrounding radio environment and extracting valuable information, and consequently adjusting transceiver parameters for facilitating flexible, efficient, and reliable operation. In this thesis, spectrum sensing algorithms for cognitive radios and radar intercept receivers are proposed. Single-user and collaborative cyclostationarity-based detection algorithms are proposed: Multicycle detectors and robust nonparametric spatial sign cyclic correlation based fixed sample size and sequential detectors are proposed. Asymptotic distributions of the test statistics under the null hypothesis are established. A censoring scheme in which only informative test statistics are transmitted to the fusion center is proposed for collaborative detection. The proposed detectors and methods have the following benefits: employing cyclostationarity enables distinction among different systems, collaboration mitigates the effects of shadowing and multipath fading, using multiple strong cyclic frequencies improves the performance, robust detection provides reliable performance in heavy-tailed non-Gaussian noise, sequential detection reduces the average detection time, and censoring improves energy efficiency. In addition, a radar waveform recognition system for classifying common pulse compression waveforms is developed. The proposed supervised classification system classifies an intercepted radar pulse to one of eight different classes based on the pulse compression waveform: linear frequency modulation, Costas frequency codes, binary codes, as well as Frank, P1, P2, P3, and P4 polyphase codes. A robust M-estimation based method for radar emitter identification is proposed as well. A common modulation profile from a group of intercepted pulses is estimated and used for identifying the radar emitter. The M-estimation based approach provides robustness against preprocessing errors and deviations from the assumed noise model
    corecore