6,689 research outputs found

    Investigation of Compact Low Pass Filter with Sharp Cut–Off using Metamaterial

    Get PDF
    In this paper a new compact microstrip Bessel low pass filter (LPF) is experimentally validated using complementary split ring resonator (CSRR) which has sharper cut-off and improved spurious band suppression characteristics. The Richard’s transformation and Kuroda’s identities are used for realizing distributed Bessel LPF from the lumped element Bessel LPF. Traditionally Butterworth and Chebyshev LPFs are used in communication systems. Those LPFs exhibits high reflection in the pass-band and it is also very difficult to achieve sharper cut-off. Because of its poor cut-off and non linear phase characteristics, it will create cross talk between microwave systems. In order to overcome the above issues our proposed LPF which has linear phase and sharper cut-off behavior is on ideal subsystem in future microwave systems. Furthermore, to prove its practical viability of the proposed design, a compact microstrip Bessel LPF was designed, simulated, fabricated and measured. It was observed from the experimentally compared results of the proposed Bessel LPF with CSRR has better sharper cut-off characteristic than the without CSRR structure

    Design and optimization of a new compact 2.4 GHz-bandpass filter using DGS technique and U-shaped resonators for WLAN applications

    Get PDF
    The objective of this work is the study, the design and the optimization of an innovative structure of a network of coupled copper metal lines deposited on the upper surface of a R04003 type substrate of height 0.813 with a ground deformed by slots (DGS). This structure is designed in an optimal configuration for use in the design of narrowband bandpass filter for wireless communication systems (WLAN), the aim of use the defected ground structure is to remove the unwanted harmonics in the rejection band, the simulation results obtained from this structure using CST software show a very high selectivity of the designed filter, a very low level of losses (less than-0.45 dB) with a size overall size of 43.5x34.3 mm

    Multi mode Resonator based Concurrent Triple band Band pass Filter with Six Transmission Zeros for Defence Intelligent Transportation Systems Application

    Get PDF
    A compact and highly selective triple-band bandpass filter (BPF) is designed and presented in this paper. Proposed filter offers low insertion loss, and passband characteristics is achieved by using two coupled MMR multi-mode resonators (MMR1 and MMR2) and an inverted T and circular shape MMRs. The filter operates at frequency 2.43 GHz (Vehicular Communication), 5.91 GHz (ITS band), and 8.86 GHz (satellite communication band). The simulation and measurement results show a minimum insertion loss of 1.6 dB, 0.73 dB, and 2.8 dB for triple-band BPF. The return loss is found to be greater than 13.06 dB, 28.6 dB, and 21.55 dB. It is noted that measurement results are in accordance with the result of electromagnetic simulation. Desired triple-band multi-mode resonators (MMRs) filter characteristics are achieved with six transmission zeroes (TZs). The filter comprises of MMRs which provide small size and control over the spurious frequency. By using a parallel-coupled microstrip line, the first and third passbands are realised. Whereas by using an end-coupled microstrip line, the second passband is recognised. At the input and output ports, the resonator coupling technique is used. By using the anti-parallel microstrip line arrangement, the transmission zero is acquired. The dimensions of the designed filter are 25×16 mm 2

    Recent Techniques in Design and Implementation of Microwave Planar Filters

    Get PDF
    This paper details the techniques and initiatives made recently for improved response and simultaneous development of microwave planar filters. Although the objective of all the techniques is to design low cost filters with reduced dimensions, compact size with better frequency response, the methodological approaches are quite variant. The paper has gone through extensive analysis of all these techniques, their concept and design procedures

    Design of compact stop-band extended microstrip low-pass filters by employing mutual-coupled square-shaped defected ground structures

    Full text link
    A new technique to reduce the size, improve the rejection in the stop-band of a low-pass filter using modified defected ground structure (DGS) is proposed. An equivalent circuit model is used to study the DGS characteristics. The parameters are extracted by using a simple circuit analysis method. Several comparisons between the EM-simulations and the circuit simulations of the new structure are demonstrated to show the validity of the proposed equivalent circuit model. We demonstrated that the filter can provide a sharp transition domain and a wide rejection in stop-band. To further verify the new technique, a filter employing the new deformed DGS is fabricated and measured. The agreement between the simulation and the measured results confirms the effectiveness of the proposed concept. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 1107–1111, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23273Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58033/1/23273_ftp.pd

    A review article of multi-band, multi-mode microstrip filters for RF, WLAN, WiMAX, and wireless communication by using stepped impedance resonator (SIR)

    Get PDF
    Filters are the basic part in wired, and wireless telecommunications and radar system circuits and they play an important role in determining the cost and performance of a system. The increasing demand for high performance in the fields of RF, WLAN, WiMAX and other wireless communications led to the great revolution in the advancement of the development of a compact microstrip resonator filter design. All these have made a vital contribution to both the required performance specifications for filters and other commercial requirements in terms of low cost, large storage capacity and high-speed performance. This review paper presents several design examples for multi-band, multi - mode microstrip filter resonators to satisfy RF, WLAN, WiMAX, UWB and other wireless communication frequency bands. To analyse the resonant frequencies odd - mode and even -modes can be used for the symmetrical structure. In general, the multi-mode resonators can be designed by using different methods like cross-coupling resonators Structure, and the allocation of the fundamental resonant frequencies of the resonator as stated by the Chebyshev's insertion loss function

    An Inter digital- Poison Ivy Leaf Shaped Filtenna with Multiple Defects in Ground for S-Band bandwidth Applications

    Get PDF
    The proposed work, a filtenna for s band application is implemented. It is designed by embedding an Interdigital band pass filter (IDBPF) and leaf shaped antenna which are operated in S band. The IDFBPF is having seven resonators with one end shorted through dual vias. It offers a bandwidth of 1.3GHz from 1.65GHz to 2.95GHz.  A Dumbbell shaped DGS (Defected Ground Structure) provided in ground to improve the filter characteristics.  Measured pass (BRL) band return loss (S11) & insertion loss (S12) are -18dB & -4.6dB correspondingly. Further, leaf shaped antenna is designed based on modified polar transformation equation; it has 2.7 GHz bandwidth from 1.3 GH to 3 GHz and has a gain of -5.45dBi, and return loss (S11) of -19.5 dB. The filtenna is obtained by integrating the IDBBPF in the fodder line of the leaf designed antenna. The final model has 1.2 GHz operating bandwidth from 02.30 GHz to 03.50 GHz with peak arrival damages at 2.4GHz and 3.1GHz with -20dB and-24dB respectively. The designed filtenna has a pass band gain of -5.3dBi. The shift in operating band is due to combining the filter with antenna. The proposed model is invented on FR4 substrate having a wideness of 01.60 mm and having a dimension of 0.25 0.58 ?02. In this final model two complementary slip ring resonators (CSRR) are used in addition with four dumbbell structures as defects in the ground plane to avoid ripples in return loss (S11) graph. A high degree of concordance exists between empirically measured and simulated outcomes. The radiation band is showing its application in S band wireless mobile communications, Wi-Fi and ISM 2.4GHz band

    Passive Components for Ultra-Wide Band (UWB) Applications

    Get PDF
    UWB technology brings the convenience and mobility of wireless communications to very high-speed interconnects in the home and office due to the precision capabilities combined with the low power. This makes it ideal for certain radio frequency sensitive environments such as hospitals and healthcare as well as radars. UWB intrusion-detection radar is used for detecting through the wall and also used for security with fuse avoidance radar, precision locating and tracking (using distance measurements between radios), and precision time-of-arrival-based localization approaches. The FCC issued a ruling in 2002 that allowed intentional UWB emissions in the frequency range between 3.1 and 10.6 GHz, subject to certain restrictions for the emission power spectrum. Other definitions for ultra-wideband range of frequency are also used such as any device that has 500 MHz bandwidth or fractional bandwidth greater than 25% is considered an UWB enable high data rate to be transferred with a very low power that does not exceed −41.3 dBm

    Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator

    Get PDF
    In this paper, a class of triple-band bandpass filters with two transmission poles in each passband is proposed using three pairs of degenerate modes in a ring resonator. In order to provide a physical insight into the resonance movements, the equivalent lumped circuits are firstly developed, where two transmission poles in the first and third passbands can be distinctly tracked as a function of port separation angle. Under the choice of 135° and 45° port separations along a ring, four open-circuited stubs are attached symmetrically along the ring and they are treated as perturbation elements to split the two second-order degenerate modes, resulting in a two-pole second passband. To verify the proposed design concept, two filter prototypes on a single microstrip ring resonator are finally designed, fabricated, and measured. The three pairs of transmission poles are achieved in all three passbands, as demonstrated and verified in simulated and measured results. © 2011 IEEE.published_or_final_versio
    corecore