928 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Leveraging Deep Learning Techniques on Collaborative Filtering Recommender Systems

    Full text link
    With the exponentially increasing volume of online data, searching and finding required information have become an extensive and time-consuming task. Recommender Systems as a subclass of information retrieval and decision support systems by providing personalized suggestions helping users access what they need more efficiently. Among the different techniques for building a recommender system, Collaborative Filtering (CF) is the most popular and widespread approach. However, cold start and data sparsity are the fundamental challenges ahead of implementing an effective CF-based recommender. Recent successful developments in enhancing and implementing deep learning architectures motivated many studies to propose deep learning-based solutions for solving the recommenders' weak points. In this research, unlike the past similar works about using deep learning architectures in recommender systems that covered different techniques generally, we specifically provide a comprehensive review of deep learning-based collaborative filtering recommender systems. This in-depth filtering gives a clear overview of the level of popularity, gaps, and ignored areas on leveraging deep learning techniques to build CF-based systems as the most influential recommenders.Comment: 24 pages, 14 figure

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art

    A deep learning-based hybrid model for recommendation generation and ranking

    Get PDF
    A recommender system plays a vital role in information filtering and retrieval, and its application is omnipresent in many domains. There are some drawbacks such as the cold-start and the data sparsity problems which affect the performance of the recommender model. Various studies help with drastically improving the performance of recommender systems via unique methods, such as the traditional way of performing matrix factorization (MF) and also applying deep learning (DL) techniques in recent years. By using DL in the recommender system, we can overcome the difficulties of collaborative filtering. DL now focuses mainly on modeling content descriptions, but those models ignore the main factor of user–item interaction. In the proposed hybrid Bayesian stacked auto-denoising encoder (HBSADE) model, it recognizes the latent interests of the user and analyzes contextual reviews that are performed through the MF method. The objective of the model is to identify the user’s point of interest, recommending products/services based on the user’s latent interests. The proposed two-stage novel hybrid deep learning-based collaborative filtering method explores the user’s point of interest, captures the communications between items and users and provides better recommendations in a personalized way. We used a multilayer neural network to manipulate the nonlinearities between the user and item communication from data. Experiments were to prove that our HBSADE outperforms existing methodologies over Amazon-b and Book-Crossing datasets

    Integrating Social Circles and Network Representation Learning for Item Recommendation

    Get PDF
    With the increasing popularity of social network services, social network platforms provide rich and additional information for recommendation algorithms. More and more researchers utilize trust relationships of users to improve the performance of recommendation algorithms. However, most of existing social-network-based recommendation algorithms ignore the following problems: (1) In different domains, users tend to trust different friends. (2) the performance of recommendation algorithms is limited by the coarse-grained trust relationships. In this paper, we propose a novel recommendation algorithm that integrates social circles and network representation learning for item recommendation. Specifically, we first infer domain-specific social trust circles based on original users’ rating information and social network information. Next, we adopt network representation technique to embed domain-specific social trust circle into a low-dimensional space, and then utilize the low-dimensional representations of users to infer the fine-grained trust relationships between users. Finally, we integrate the fine-gained trust relationships into domain-specific matrix factorization model to learn latent user and item feature vectors. Experimental results on real-world datasets show that our proposed approach outperforms traditional social-network-based recommendation algorithms

    Recommendation system using autoencoders

    Get PDF
    The magnitude of the daily explosion of high volumes of data has led to the emergence of the Big Data paradigm. The ever-increasing amount of information available on the Internet makes it increasingly difficult for individuals to find what they need quickly and easily. Recommendation systems have appeared as a solution to overcome this problem. Collaborative filtering is widely used in this type of systems, but high dimensions and data sparsity are always a main problem. With the idea of deep learning gaining more importance, several works have emerged to improve this type of filtering. In this article, a product recommendation system is proposed where an autoencoder based on a collaborative filtering method is employed. A comparison of this model with the Singular Value Decomposition is made and presented in the results section. Our experiment shows a very low Root Mean Squared Error (RMSE) value, considering that the recommendations presented to the users are in line with their interests and are not affected by the data sparsity problem as the datasets are very sparse, 0.996. The results are quite promising achieving an RMSE value of 0.029 in the first dataset and 0.010 in the second one.This research has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D UnitsProject Scope: UIDB/00319/202

    A Survey of e-Commerce Recommender Systems

    Get PDF
    Due to their powerful personalization and efficiency features, recommendation systems are being used extensively in many online environments. Recommender systems provide great opportunities to businesses, therefore research on developing new recommender system techniques and methods have been receiving increasing attention. This paper reviews recent developments in recommender systems in the domain of ecommerce. The main purpose of the paper is to summarize and compare the latest improvements of e-commerce recommender systems from the perspective of e-vendors. By examining the recent publications in the field, our research provides thorough analysis of current advancements and attempts to identify the existing issues in recommender systems. Final outcomes give practitioners and researchers the necessary insights and directions on recommender systems

    MetaRec: Meta-Learning Meets Recommendation Systems

    Get PDF
    Artificial neural networks (ANNs) have recently received increasing attention as powerful modeling tools to improve the performance of recommendation systems. Meta-learning, on the other hand, is a paradigm that has re-surged in popularity within the broader machine learning community over the past several years. In this thesis, we will explore the intersection of these two domains and work on developing methods for integrating meta-learning to design more accurate and flexible recommendation systems. In the present work, we propose a meta-learning framework for the design of collaborative filtering methods in recommendation systems, drawing from ideas, models, and solutions from modern approaches in both the meta-learning and recommendation system literature, applying them to recommendation tasks to obtain improved generalization performance. Our proposed framework, MetaRec, includes and unifies the main state-of-the-art models in recommendation systems, extending them to be flexibly configured and efficiently operate with limited data. We empirically test the architectures created under our MetaRec framework on several recommendation benchmark datasets using a plethora of evaluation metrics and find that by taking a meta-learning approach to the collaborative filtering problem, we observe notable gains in predictive performance
    • …
    corecore