72 research outputs found

    Towards a field configurable non-homogeneous multiprocessors architecture

    Get PDF
    Standard microprocessors are generally designed to deal efficiently with different types of tasks; their general purpose architecture can lead to misuse of resources, creating a large gap between the computational efficiency of microprocessors and custom silicon. The ever increasing complexity of Field Programmable Logic devices is driving the industry to look for innovative System on a Chip solutions; using programmable logic, the whole design can be tuned to the application requirements. In this paper, under the acronym MPOC (Multiprocessors On a Chip) we propose some applicable ideas on multiprocessing embedded configurable architectures, targeting System on a Programmable Chip (SOPC) cost-effective designs. Using heterogeneous medium or low performance soft-core processors instead of a single high performance processor, and some standardized communication schemes to link these multiple processors, the “best” core can be chosen for each subtask using a computational efficiency criteria, and therefore improving silicon usage. System-level design is also considered: models of tasks and links, parameterized soft-core processors, and the use of a standard HDL for system description can lead to automatic generation of the final design

    Adapting an IP MC6805 core for multiprocessing and multitasking

    Get PDF
    The availability of high-density field configurable devices provides the opportunity for designing highly integrated solutions (SOPC: System On a Programmable Chip).\nAmong the SOPC solutions, a case is the integration of an embedded single processor equipped with a multitasking operating system. As an alternative to a single processor the embedding of various processors on a chip, even heterogeneous and with multitasking capacity, may be considered.\nA distinctive characteristic of a SOPC device is that the tasks to be performed are well known before the design starts. That feature is opposed to the traditional multiprocessing and multitasking systems in which general purpose applications are adopted during design. The benefit of this knowledge is that hardware as well as software can be adapted to fit the application’s requirements.\nThis paper presents the hardware modifications performed on an microcontroller embedded core, to allow its inclusion as a multitasking device in a “multiprocessor on a chip”, through the addition of a hardware task manager (scheduler) and communication channels among processors.La disponibilidad de dispositivos de Lógica Programable de alta densidad de integración permite buscar soluciones integradas en un dispositivo SOPC (System On a Programmable Chip).\nUn tema de creciente interés son los procesadores empotrados, siendo usual un único procesador y un sistema operativo con capacidad de multitarea.\nSin embargo, debe considerarse como alternativa insertar varios procesadores, no necesariamente idénticos, que pueden a su vez atender varias tareas. En un SOPC, como diferencia fundamental con los casos tradicionales de multiprocesamiento y multitarea, las tareas a realizar son conocidas antes de comenzar el diseño, por lo tanto hardware como software se pueden configurar a medida de la aplicación, combinando la velocidad propia del primero, con la versatilidad del segundo.\nEste artículo describe las modificaciones de hardware realizadas al núcleo IP (Intellectual Property) de un procesador, de modo de permitir la inclusión de un administrador de tareas por hardware y de canales de comunicación interprocesadores

    Adapting an IP MC6805 core for multiprocessing and multitasking

    Get PDF
    La disponibilidad de dispositivos de Lógica Programable de alta densidad de integración permite buscar soluciones integradas en un dispositivo SOPC (System On a Programmable Chip). Un tema de creciente interés son los procesadores empotrados, siendo usual un único procesador y un sistema operativo con capacidad de multitarea. Sin embargo, debe considerarse como alternativa insertar varios procesadores, no necesariamente idénticos, que pueden a su vez atender varias tareas. En un SOPC, como diferencia fundamental con los casos tradicionales de multiprocesamiento y multitarea, las tareas a realizar son conocidas antes de comenzar el diseño, por lo tanto hardware como software se pueden configurar a medida de la aplicación, combinando la velocidad propia del primero, con la versatilidad del segundo. Este artículo describe las modificaciones de hardware realizadas al núcleo IP (Intellectual Property) de un procesador, de modo de permitir la inclusión de un administrador de tareas por hardware y de canales de comunicación interprocesadores.The availability of high-density field configurable devices provides the opportunity for designing highly integrated solutions (SOPC: System On a Programmable Chip). Among the SOPC solutions, a case is the integration of an embedded single processor equipped with a multitasking operating system. As an alternative to a single processor the embedding of various processors on a chip, even heterogeneous and with multitasking capacity, may be considered. A distinctive characteristic of a SOPC device is that the tasks to be performed are well known before the design starts. That feature is opposed to the traditional multiprocessing and multitasking systems in which general purpose applications are adopted during design. The benefit of this knowledge is that hardware as well as software can be adapted to fit the application’s requirements. This paper presents the hardware modifications performed on an microcontroller embedded core, to allow its inclusion as a multitasking device in a “multiprocessor on a chip”, through the addition of a hardware task manager (scheduler) and communication channels among processors.Facultad de Informátic

    Adapting an IP MC6805 core for multiprocessing and multitasking

    Get PDF
    La disponibilidad de dispositivos de Lógica Programable de alta densidad de integración permite buscar soluciones integradas en un dispositivo SOPC (System On a Programmable Chip). Un tema de creciente interés son los procesadores empotrados, siendo usual un único procesador y un sistema operativo con capacidad de multitarea. Sin embargo, debe considerarse como alternativa insertar varios procesadores, no necesariamente idénticos, que pueden a su vez atender varias tareas. En un SOPC, como diferencia fundamental con los casos tradicionales de multiprocesamiento y multitarea, las tareas a realizar son conocidas antes de comenzar el diseño, por lo tanto hardware como software se pueden configurar a medida de la aplicación, combinando la velocidad propia del primero, con la versatilidad del segundo. Este artículo describe las modificaciones de hardware realizadas al núcleo IP (Intellectual Property) de un procesador, de modo de permitir la inclusión de un administrador de tareas por hardware y de canales de comunicación interprocesadores.The availability of high-density field configurable devices provides the opportunity for designing highly integrated solutions (SOPC: System On a Programmable Chip). Among the SOPC solutions, a case is the integration of an embedded single processor equipped with a multitasking operating system. As an alternative to a single processor the embedding of various processors on a chip, even heterogeneous and with multitasking capacity, may be considered. A distinctive characteristic of a SOPC device is that the tasks to be performed are well known before the design starts. That feature is opposed to the traditional multiprocessing and multitasking systems in which general purpose applications are adopted during design. The benefit of this knowledge is that hardware as well as software can be adapted to fit the application’s requirements. This paper presents the hardware modifications performed on an microcontroller embedded core, to allow its inclusion as a multitasking device in a “multiprocessor on a chip”, through the addition of a hardware task manager (scheduler) and communication channels among processors.Facultad de Informátic

    Prototyping Methodologies and Design of Communication-centric Heterogeneous Many-core Architectures

    Get PDF

    A survey of techniques for reducing interference in real-time applications on multicore platforms

    Get PDF
    This survey reviews the scientific literature on techniques for reducing interference in real-time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents proposals that use interference reduction techniques without considering the predictability issue. The survey highlights interference sources and categorizes proposals from the perspective of the shared resource. It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the integration of interference effects into schedulability analysis. Every section contains an overview of each proposal and an assessment of its advantages and disadvantages.This work was supported in part by the Comunidad de Madrid Government "Nuevas Técnicas de Desarrollo de Software de Tiempo Real Embarcado Para Plataformas. MPSoC de Próxima Generación" under Grant IND2019/TIC-17261

    Adaptación del núcleo IP de un procesador tipo MC6805 para operar en un ambiente multiprocesador y multitarea

    Get PDF
    La disponibilidad de dispositivos de Lógica Programable de alta densidad de integración permite buscar soluciones integradas en un dispositivo SOPC (System On a Programmable Chip). Un tema de creciente interés son los procesadores empotrados, siendo usual un único procesador y un sistema operativo con capacidad de multitarea. Sin embargo, debe considerarse como alternativa insertar varios procesadores, no necesariamente idénticos, que pueden a su vez atender varias tareas. En un SOPC, como diferencia fundamental con los casos tradicionales de multiprocesamiento y multitarea, las tareas a realizar son conocidas antes de comenzar el diseño, por lo tanto hardware como software se pueden configurar a medida de la aplicación, combinando la velocidad propia del primero, con la versatilidad del segundo. Este artículo describe las modificaciones de hardware realizadas al núcleo IP (Intellectual Property) de un procesador, de modo de permitir la inclusión de un administrador de tareas por hardware y de canales de comunicación interprocesadores

    Adaptación del núcleo IP de un procesador tipo MC6805 para operar en un ambiente multiprocesador y multitarea

    Get PDF
    La disponibilidad de dispositivos de Lógica Programable de alta densidad de integración permite buscar soluciones integradas en un dispositivo SOPC (System On a Programmable Chip). Un tema de creciente interés son los procesadores empotrados, siendo usual un único procesador y un sistema operativo con capacidad de multitarea. Sin embargo, debe considerarse como alternativa insertar varios procesadores, no necesariamente idénticos, que pueden a su vez atender varias tareas. En un SOPC, como diferencia fundamental con los casos tradicionales de multiprocesamiento y multitarea, las tareas a realizar son conocidas antes de comenzar el diseño, por lo tanto hardware como software se pueden configurar a medida de la aplicación, combinando la velocidad propia del primero, con la versatilidad del segundo. Este artículo describe las modificaciones de hardware realizadas al núcleo IP (Intellectual Property) de un procesador, de modo de permitir la inclusión de un administrador de tareas por hardware y de canales de comunicación interprocesadores.Eje: Sistemas operativos.Red de Universidades con Carreras en Informátic

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft
    corecore