1,832 research outputs found

    K-Means Fingerprint Clustering for Low-Complexity Floor Estimation in Indoor Mobile Localization

    Full text link
    Indoor localization in multi-floor buildings is an important research problem. Finding the correct floor, in a fast and efficient manner, in a shopping mall or an unknown university building can save the users' search time and can enable a myriad of Location Based Services in the future. One of the most widely spread techniques for floor estimation in multi-floor buildings is the fingerprinting-based localization using Received Signal Strength (RSS) measurements coming from indoor networks, such as WLAN and BLE. The clear advantage of RSS-based floor estimation is its ease of implementation on a multitude of mobile devices at the Application Programming Interface (API) level, because RSS values are directly accessible through API interface. However, the downside of a fingerprinting approach, especially for large-scale floor estimation and positioning solutions, is their need to store and transmit a huge amount of fingerprinting data. The problem becomes more severe when the localization is intended to be done on mobile devices which have limited memory, power, and computational resources. An alternative floor estimation method, which has lower complexity and is faster than the fingerprinting is the Weighted Centroid Localization (WCL) method. The trade-off is however paid in terms of a lower accuracy than the one obtained with traditional fingerprinting with Nearest Neighbour (NN) estimates. In this paper a novel K-means-based method for floor estimation via fingerprint clustering of WiFi and various other positioning sensor outputs is introduced. Our method achieves a floor estimation accuracy close to the one with NN fingerprinting, while significantly improves the complexity and the speed of the floor detection algorithm. The decrease in the database size is achieved through storing and transmitting only the cluster heads (CH's) and their corresponding floor labels.Comment: Accepted to IEEE Globecom 2015, Workshop on Localization and Tracking: Indoors, Outdoors and Emerging Network

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process
    corecore