2,355 research outputs found

    Topics in social network analysis and network science

    Full text link
    This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recently, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided

    Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network

    Get PDF
    Topological evolution over time in a dynamic network triggers both the addition and deletion of actors and the links among them. A dynamic network can be represented as a time series of network snapshots where each snapshot represents the state of the network over an interval of time (for example, a minute, hour or day). The duration of each snapshot denotes the temporal scale/sliding window of the dynamic network and all the links within the duration of the window are aggregated together irrespective of their order in time. The inherent trade-off in selecting the timescale in analysing dynamic networks is that choosing a short temporal window may lead to chaotic changes in network topology and measures (for example, the actors’ centrality measures and the average path length); however, choosing a long window may compromise the study and the investigation of network dynamics. Therefore, to facilitate the analysis and understand different patterns of actor-oriented evolutionary aspects, it is necessary to define an optimal window length (temporal duration) with which to sample a dynamic network. In addition to determining the optical temporal duration, another key task for understanding the dynamics of evolving networks is being able to predict the likelihood of future links among pairs of actors given the existing states of link structure at present time. This phenomenon is known as the link prediction problem in network science. Instead of considering a static state of a network where the associated topology does not change, dynamic link prediction attempts to predict emerging links by considering different types of historical/temporal information, for example the different types of temporal evolutions experienced by the actors in a dynamic network due to the topological evolution over time, known as actor dynamicities. Although there has been some success in developing various methodologies and metrics for the purpose of dynamic link prediction, mining actor-oriented evolutions to address this problem has received little attention from the research community. In addition to this, the existing methodologies were developed without considering the sampling window size of the dynamic network, even though the sampling duration has a large impact on mining the network dynamics of an evolutionary network. Therefore, although the principal focus of this thesis is link prediction in dynamic networks, the optimal sampling window determination was also considered

    Assessing the Effect of Social Networks on Employee Creativity in a Fast-Food Restaurant Environment

    Get PDF
    Creativity has been widely recognized as critical to the economic success of organizations for over 60 years. Today, it is considered to be the most highly prized commodity of businesses. As such, there have been numerous efforts to better understand creativity with the goal of increasing individual creativity and therefore improving the economic success of organizations. An emerging area of research on creativity recognizes creativity as a complex, social process that is dependent upon many factors, including those of an environmental nature. In support of this perspective, a growing amount of research has investigated the effect of social networks on individual creativity. This relationship is based on the premise that an individual\u27s social network affects access to diverse information, which in turn, is critical for creativity. The previous studies on this relationship, however, have been conducted in a limited number of environments, most of which have been knowledge-intensive in nature. As such, this study was conducted in a fast-food restaurant environment to determine whether the relationship between social networks and creativity is the same as in other, previously studied environments. Data was collected for a sample of 247 employees of an organization consisting of seven fast-food franchise restaurants of a popular fast-food restaurant chain in the northeast region of the United States. An ordinary least squares regression model was developed to investigate the relationship between creativity and the commonly studied social network variables: number of weak ties, number of strong ties, clustering, and centrality. The social network variables accounted for 17.3% of the overall variance in creativity, establishing that a relationship does exist between social networks and creativity in the fast-food restaurant environment. This relationship, however, was not as expected. In contrast to expectations, weak ties were not found to be a significant, positive predictor of creativity. Also, strong ties were found to be a significant, positive predictor of creativity, where it was expected that this relationship would be in the negative direction. Centrality, however, was found to be a significant, positive predictor of creativity, as expected, while the results for clustering were inconclusive due to its high correlation with the other social network variables in the study. As such, it appears that the relationship between social networks and creativity may be different in the fast-food restaurant environment when compared to environments previously studied. It is possible that this difference is a result of the differences between high and low knowledge-intensive working environments. The lack of support for weak ties as a significant positive predictor of creativity in conjunction with limited opportunities for significant creative achievement suggests that access to diverse information may be less important for creativity in the fast-food restaurant environment than in other environments. The findings that strong ties and centrality are significant, positive predictors of creativity, however, appear to indicate that the ability to implement a creative idea, however minor it may be, is more important in the fast-food restaurant environment than the generation of that idea in the first place. Due to the limitations of this study, however, it is not possible to definitively conclude this notion without efforts to determine which factor afforded by positions rich in strong ties or high in centrality, the informational benefits or the organizational influence, is more important for creativity

    Correlation Clustering

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The core step of the KDD process is the application of a Data Mining algorithm in order to produce a particular enumeration of patterns and relationships in large databases. Clustering is one of the major data mining techniques and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized, and the similarity of objects from different clusters is minimized. This can serve to group customers with similar interests, or to group genes with related functionalities. Currently, a challenge for clustering-techniques are especially high dimensional feature-spaces. Due to modern facilities of data collection, real data sets usually contain many features. These features are often noisy or exhibit correlations among each other. However, since these effects in different parts of the data set are differently relevant, irrelevant features cannot be discarded in advance. The selection of relevant features must therefore be integrated into the data mining technique. Since about 10 years, specialized clustering approaches have been developed to cope with problems in high dimensional data better than classic clustering approaches. Often, however, the different problems of very different nature are not distinguished from one another. A main objective of this thesis is therefore a systematic classification of the diverse approaches developed in recent years according to their task definition, their basic strategy, and their algorithmic approach. We discern as main categories the search for clusters (i) w.r.t. closeness of objects in axis-parallel subspaces, (ii) w.r.t. common behavior (patterns) of objects in axis-parallel subspaces, and (iii) w.r.t. closeness of objects in arbitrarily oriented subspaces (so called correlation cluster). For the third category, the remaining parts of the thesis describe novel approaches. A first approach is the adaptation of density-based clustering to the problem of correlation clustering. The starting point here is the first density-based approach in this field, the algorithm 4C. Subsequently, enhancements and variations of this approach are discussed allowing for a more robust, more efficient, or more effective behavior or even find hierarchies of correlation clusters and the corresponding subspaces. The density-based approach to correlation clustering, however, is fundamentally unable to solve some issues since an analysis of local neighborhoods is required. This is a problem in high dimensional data. Therefore, a novel method is proposed tackling the correlation clustering problem in a global approach. Finally, a method is proposed to derive models for correlation clusters to allow for an interpretation of the clusters and facilitate more thorough analysis in the corresponding domain science. Finally, possible applications of these models are proposed and discussed.Knowledge Discovery in Databases (KDD) ist der Prozess der automatischen Extraktion von Wissen aus großen Datenmengen, das gĂŒltig, bisher unbekannt und potentiell nĂŒtzlich fĂŒr eine gegebene Anwendung ist. Der zentrale Schritt des KDD-Prozesses ist das Anwenden von Data Mining-Techniken, um nĂŒtzliche Beziehungen und ZusammenhĂ€nge in einer aufbereiteten Datenmenge aufzudecken. Eine der wichtigsten Techniken des Data Mining ist die Cluster-Analyse (Clustering). Dabei sollen die Objekte einer Datenbank in Gruppen (Cluster) partitioniert werden, so dass Objekte eines Clusters möglichst Ă€hnlich und Objekte verschiedener Cluster möglichst unĂ€hnlich zu einander sind. Hier können beispielsweise Gruppen von Kunden identifiziert werden, die Ă€hnliche Interessen haben, oder Gruppen von Genen, die Ă€hnliche FunktionalitĂ€ten besitzen. Eine aktuelle Herausforderung fĂŒr Clustering-Verfahren stellen hochdimensionale Feature-RĂ€ume dar. Reale DatensĂ€tze beinhalten dank moderner Verfahren zur Datenerhebung hĂ€ufig sehr viele Merkmale (Features). Teile dieser Merkmale unterliegen oft Rauschen oder AbhĂ€ngigkeiten und können meist nicht im Vorfeld ausgesiebt werden, da diese Effekte in Teilen der Datenbank jeweils unterschiedlich ausgeprĂ€gt sind. Daher muss die Wahl der Features mit dem Data-Mining-Verfahren verknĂŒpft werden. Seit etwa 10 Jahren werden vermehrt spezialisierte Clustering-Verfahren entwickelt, die mit den in hochdimensionalen Feature-RĂ€umen auftretenden Problemen besser umgehen können als klassische Clustering-Verfahren. Hierbei wird aber oftmals nicht zwischen den ihrer Natur nach im Einzelnen sehr unterschiedlichen Problemen unterschieden. Ein Hauptanliegen der Dissertation ist daher eine systematische Einordnung der in den letzten Jahren entwickelten sehr diversen AnsĂ€tze nach den Gesichtspunkten ihrer jeweiligen Problemauffassung, ihrer grundlegenden Lösungsstrategie und ihrer algorithmischen Vorgehensweise. Als Hauptkategorien unterscheiden wir hierbei die Suche nach Clustern (1.) hinsichtlich der NĂ€he von Cluster-Objekten in achsenparallelen UnterrĂ€umen, (2.) hinsichtlich gemeinsamer Verhaltensweisen (Mustern) von Cluster-Objekten in achsenparallelen UnterrĂ€umen und (3.) hinsichtlich der NĂ€he von Cluster-Objekten in beliebig orientierten UnterrĂ€umen (sogenannte Korrelations-Cluster). FĂŒr die dritte Kategorie sollen in den weiteren Teilen der Dissertation innovative LösungsansĂ€tze entwickelt werden. Ein erster Lösungsansatz basiert auf einer Erweiterung des dichte-basierten Clustering auf die Problemstellung des Korrelations-Clustering. Den Ausgangspunkt bildet der erste dichtebasierte Ansatz in diesem Bereich, der Algorithmus 4C. Anschließend werden Erweiterungen und Variationen dieses Ansatzes diskutiert, die robusteres, effizienteres oder effektiveres Verhalten aufweisen oder sogar Hierarchien von Korrelations-Clustern und den entsprechenden UnterrĂ€umen finden. Die dichtebasierten Korrelations-Cluster-Verfahren können allerdings einige Probleme grundsĂ€tzlich nicht lösen, da sie auf der Analyse lokaler Nachbarschaften beruhen. Dies ist in hochdimensionalen Feature-RĂ€umen problematisch. Daher wird eine weitere Neuentwicklung vorgestellt, die das Korrelations-Cluster-Problem mit einer globalen Methode angeht. Schließlich wird eine Methode vorgestellt, die Cluster-Modelle fĂŒr Korrelationscluster ableitet, so dass die gefundenen Cluster interpretiert werden können und tiefergehende Untersuchungen in der jeweiligen Fachdisziplin zielgerichtet möglich sind. Mögliche Anwendungen dieser Modelle werden abschließend vorgestellt und untersucht
    • 

    corecore