10,697 research outputs found

    Relationship between problem-based learning experience and self-directed learning readiness

    Get PDF
    Tun Hussein Onn University of Malaysia (UTHM) has been implementing Problem-Based Learning (PBL) to some degree in various subjects. However, to this day no empirical data has been gathered on the effectiveness of PBL as a methodology to develop self-directed learning (SDL) skills. The purpose of this study is to investigate self-directed learning readiness (SDLR) among UTHM students exposed to vaiying PBL exposure intensity. SDLR was measured using the modified version of Self-Directed Learning Readiness (SDLRS). Participants in this study were first-year undergraduate students at UTHM. The instrument was administrated to students in Electrical and Electronics Engineering, Civil and Environmental Engineering, and Technical Education (N=260). Data were analyzed using descriptive and inferential statistical techniques with analysis of variance (ANOVA) and the independent /'-test for equal variance for hypotheses testing. The results of this study indicate that overall SDLR level increase with PBL exposure up to exposure intensity twice, beyond which no increase in SDLR was observed with increase in PBL exposure. Within the same academic programme, results did not show a statistically significant difference of SDLR level between groups exposed to varying PBL exposure intensity. However, significant difference was found in some dimensions of the SDLR for the Technical Education students. Within the same education background, results did not show a statistically significant difference of SDLR level between groups exposed to varying PBL intensity. However, significant difference was found in some dimensions of the SDLR for students with both Matriculations and STPM background. A statistically significant difference of SDLR level was found between Electrical Engineering and Technical Education students for exposure once and in some SDLR dimensions. No statistically significant difference was found between students from different academic programme for exposure twice or thrice. The data supports the conclusion that SDLR level increases with increase in PBL exposure intensity up to a certain extent only, beyond which no increase of SDLR can be observed. The data also suggest that only certain dimensions of the SDLR improve with increased exposure to PBL

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Robust techniques and applications in fuzzy clustering

    Get PDF
    This dissertation addresses issues central to frizzy classification. The issue of sensitivity to noise and outliers of least squares minimization based clustering techniques, such as Fuzzy c-Means (FCM) and its variants is addressed. In this work, two novel and robust clustering schemes are presented and analyzed in detail. They approach the problem of robustness from different perspectives. The first scheme scales down the FCM memberships of data points based on the distance of the points from the cluster centers. Scaling done on outliers reduces their membership in true clusters. This scheme, known as the Mega-clustering, defines a conceptual mega-cluster which is a collective cluster of all data points but views outliers and good points differently (as opposed to the concept of Dave\u27s Noise cluster). The scheme is presented and validated with experiments and similarities with Noise Clustering (NC) are also presented. The other scheme is based on the feasible solution algorithm that implements the Least Trimmed Squares (LTS) estimator. The LTS estimator is known to be resistant to noise and has a high breakdown point. The feasible solution approach also guarantees convergence of the solution set to a global optima. Experiments show the practicability of the proposed schemes in terms of computational requirements and in the attractiveness of their simplistic frameworks. The issue of validation of clustering results has often received less attention than clustering itself. Fuzzy and non-fuzzy cluster validation schemes are reviewed and a novel methodology for cluster validity using a test for random position hypothesis is developed. The random position hypothesis is tested against an alternative clustered hypothesis on every cluster produced by the partitioning algorithm. The Hopkins statistic is used as a basis to accept or reject the random position hypothesis, which is also the null hypothesis in this case. The Hopkins statistic is known to be a fair estimator of randomness in a data set. The concept is borrowed from the clustering tendency domain and its applicability to validating clusters is shown here. A unique feature selection procedure for use with large molecular conformational datasets with high dimensionality is also developed. The intelligent feature extraction scheme not only helps in reducing dimensionality of the feature space but also helps in eliminating contentious issues such as the ones associated with labeling of symmetric atoms in the molecule. The feature vector is converted to a proximity matrix, and is used as an input to the relational fuzzy clustering (FRC) algorithm with very promising results. Results are also validated using several cluster validity measures from literature. Another application of fuzzy clustering considered here is image segmentation. Image analysis on extremely noisy images is carried out as a precursor to the development of an automated real time condition state monitoring system for underground pipelines. A two-stage FCM with intelligent feature selection is implemented as the segmentation procedure and results on a test image are presented. A conceptual framework for automated condition state assessment is also developed

    Possibilistic and fuzzy clustering methods for robust analysis of non-precise data

    Get PDF
    This work focuses on robust clustering of data affected by imprecision. The imprecision is managed in terms of fuzzy sets. The clustering process is based on the fuzzy and possibilistic approaches. In both approaches the observations are assigned to the clusters by means of membership degrees. In fuzzy clustering the membership degrees express the degrees of sharing of the observations to the clusters. In contrast, in possibilistic clustering the membership degrees are degrees of typicality. These two sources of information are complementary because the former helps to discover the best fuzzy partition of the observations while the latter reflects how well the observations are described by the centroids and, therefore, is helpful to identify outliers. First, a fully possibilistic k-means clustering procedure is suggested. Then, in order to exploit the benefits of both the approaches, a joint possibilistic and fuzzy clustering method for fuzzy data is proposed. A selection procedure for choosing the parameters of the new clustering method is introduced. The effectiveness of the proposal is investigated by means of simulated and real-life data

    Ligand-based design of dopamine reuptake inhibitors : fuzzy relational clustering and 2-D and 3-D QSAR modleing

    Get PDF
    As the three-dimensional structure of the dopamine transporter (DAT) remains undiscovered, any attempt to model the binding of drug-like ligands to this protein must necessarily include strategies that use ligand information. For flexible ligands that bind to the DAT, the identification of the binding conformation becomes an important but challenging task. In the first part of this work, the selection of a few representative structures as putative binding conformations from a large collection of conformations of a flexible GBR 12909 analogue was demonstrated by cluster analysis. Novel structurebased features that can be easily generalized to other molecules were developed and used for clustering. Since the feature space may or may not be Euclidean, a recently-developed fuzzy relational clustering algorithm capable of handling such data was used. Both superposition-dependent and superposition-independent features were used along with region-specific clustering that focused on separate pharmacophore elements in the molecule. Separate sets of representative structures were identified for the superpositiondependent and superposition-independent analyses. In the second part of this work, several QSAR models were developed for a series of analogues of methylphenidate (MP), another potent dopamine reuptake inhibitor. In a novel method, the Electrotopological-state (B-state) indices for atoms of the scaffold common to all 80 compounds were used to develop an effective test set spanning both the structure space as well as the activity space. The utility of B-state indices in modeling a series of analogues with a common scaffold was demonstrated. Several models were developed using various combinations of 2-D and 3-D descriptors in the Molconn-Z and MOE descriptor sets. The models derived from CoMFA descriptors were found to be the most predictive and explanatory. Progressive scrambling of all models indicated several stable models. The best models were used to predict the activity of the test set analogues and were found to produce reasonable residuals. Substitutions in the phenyl ring of MP, especially at the 3- and 4-positions, were found to be the most important for DATbinding. It was predicted that for better DAT-binding the substituents at these positions should be relatively bulky, electron-rich atoms or groups

    Neuroengineering of Clustering Algorithms

    Get PDF
    Cluster analysis can be broadly divided into multivariate data visualization, clustering algorithms, and cluster validation. This dissertation contributes neural network-based techniques to perform all three unsupervised learning tasks. Particularly, the first paper provides a comprehensive review on adaptive resonance theory (ART) models for engineering applications and provides context for the four subsequent papers. These papers are devoted to enhancements of ART-based clustering algorithms from (a) a practical perspective by exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a preprocessor for ART offline training, thus mitigating ordering effects; and (b) an engineering perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex cluster structures), merge ART (aggregates partitions and lessens ordering effects in online learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance parameter selection and alleviates ordering effects in offline learning). The sixth paper consists of enhancements to data visualization using self-organizing maps (SOMs) by depicting in the reduced dimension and topology-preserving SOM grid information-theoretic similarity measures between neighboring neurons. This visualization\u27s parameters are estimated using samples selected via a single-linkage procedure, thereby generating heatmaps that portray more homogeneous within-cluster similarities and crisper between-cluster boundaries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a) incorporating existing formulations of online computations for clusters\u27 descriptors, or (b) modifying an existing ART-based model and incrementally updating local density counts between prototypes. Moreover, this last paper provides the first comprehensive comparison of iCVIs in the computational intelligence literature --Abstract, page iv
    • …
    corecore