8,403 research outputs found

    Chip and Signature Interleaving in DS CDMA Systems

    Get PDF
    Siirretty Doriast

    Sequence Design for Cognitive CDMA Communications under Arbitrary Spectrum Hole Constraint

    Full text link
    To support interference-free quasi-synchronous code-division multiple-access (QS-CDMA) communication with low spectral density profile in a cognitive radio (CR) network, it is desirable to design a set of CDMA spreading sequences with zero-correlation zone (ZCZ) property. However, traditional ZCZ sequences (which assume the availability of the entire spectral band) cannot be used because their orthogonality will be destroyed by the spectrum hole constraint in a CR channel. To date, analytical construction of ZCZ CR sequences remains open. Taking advantage of the Kronecker sequence property, a novel family of sequences (called "quasi-ZCZ" CR sequences) which displays zero cross-correlation and near-zero auto-correlation zone property under arbitrary spectrum hole constraint is presented in this paper. Furthermore, a novel algorithm is proposed to jointly optimize the peak-to-average power ratio (PAPR) and the periodic auto-correlations of the proposed quasi-ZCZ CR sequences. Simulations show that they give rise to single-user bit-error-rate performance in CR-CDMA systems which outperform traditional non-contiguous multicarrier CDMA and transform domain communication systems; they also lead to CR-CDMA systems which are more resilient than non-contiguous OFDM systems to spectrum sensing mismatch, due to the wideband spreading.Comment: 13 pages,10 figures,Accepted by IEEE Journal on Selected Areas in Communications (JSAC)--Special Issue:Cognitive Radio Nov, 201

    Design of sequences with good correlation properties

    Get PDF
    This thesis is dedicated to exploring sequences with good correlation properties. Periodic sequences with desirable correlation properties have numerous applications in communications. Ideally, one would like to have a set of sequences whose out-of-phase auto-correlation magnitudes and cross-correlation magnitudes are very small, preferably zero. However, theoretical bounds show that the maximum magnitudes of auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if a set of sequences possesses good auto-correlation properties, then the cross-correlation properties are not good and vice versa. The design of sequence sets that achieve those theoretical bounds is therefore of great interest. In addition, instead of pursuing the least possible correlation values within an entire period, it is also interesting to investigate families of sequences with ideal correlation in a smaller zone around the origin. Such sequences are referred to as sequences with zero correlation zone or ZCZ sequences, which have been extensively studied due to their applications in 4G LTE and 5G NR systems, as well as quasi-synchronous code-division multiple-access communication systems. Paper I and a part of Paper II aim to construct sequence sets with low correlation within a whole period. Paper I presents a construction of sequence sets that meets the Sarwate bound. The construction builds a connection between generalised Frank sequences and combinatorial objects, circular Florentine arrays. The size of the sequence sets is determined by the existence of circular Florentine arrays of some order. Paper II further connects circular Florentine arrays to a unified construction of perfect polyphase sequences, which include generalised Frank sequences as a special case. The size of a sequence set that meets the Sarwate bound, depends on a divisor of the period of the employed sequences, as well as the existence of circular Florentine arrays. Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and III propose infinite families of optimal ZCZ sequence sets with respect to some bound, which are used to eliminate interference within a single cell in a cellular network. Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ sequence sets with favorable inter-set cross-correlation, which can be used in multi-user communication environments to minimize inter-cell interference. In particular, Paper~II employs circular Florentine arrays and improves the number of the optimal ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.Doktorgradsavhandlin

    New Sets of Optimal Odd-length Binary Z-Complementary Pairs

    Get PDF
    A pair of sequences is called a Z-complementary pair (ZCP) if it has zero aperiodic autocorrelation sums (AACSs) for time-shifts within a certain region, called zero correlation zone (ZCZ). Optimal odd-length binary ZCPs (OB-ZCPs) display closest correlation properties to Golay complementary pairs (GCPs) in that each OB-ZCP achieves maximum ZCZ of width (N+1)/2 (where N is the sequence length) and every out-of-zone AACSs reaches the minimum magnitude value, i.e. 2. Till date, systematic constructions of optimal OB-ZCPs exist only for lengths 2α±12^{\alpha} \pm 1, where α\alpha is a positive integer. In this paper, we construct optimal OB-ZCPs of generic lengths 2α10β26γ+12^\alpha 10^\beta 26^\gamma +1 (where α, β, γ\alpha,~ \beta, ~ \gamma are non-negative integers and α1\alpha \geq 1) from inserted versions of binary GCPs. The key leading to the proposed constructions is several newly identified structure properties of binary GCPs obtained from Turyn's method. This key also allows us to construct OB-ZCPs with possible ZCZ widths of 4×10β1+14 \times 10^{\beta-1} +1, 12×26γ1+112 \times 26^{\gamma -1}+1 and 12×10β26γ1+112 \times 10^\beta 26^{\gamma -1}+1 through proper insertions of GCPs of lengths 10β, 26γ,and 10β26γ10^\beta,~ 26^\gamma, \text{and } 10^\beta 26^\gamma, respectively. Our proposed OB-ZCPs have applications in communications and radar (as an alternative to GCPs)

    Defining hierarchical protein interaction networks from spectral analysis of bacterial proteomes

    Get PDF
    Cellular behaviors emerge from layers of molecular interactions: proteins interact to form complexes, pathways, and phenotypes. We show that hierarchical networks of protein interactions can be defined from the statistical pattern of proteome variation measured across thousands of diverse bacteria and that these networks reflect the emergence of complex bacterial phenotypes. Our results are validated through gene-set enrichment analysis and comparison to existing experimentally derived databases. We demonstrate the biological utility of our approach by creating a model of motility i

    Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction

    Full text link
    [EN] Purpose: To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI). Methods: This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE 50%, and viable segments those showing 0 < LGE < 50% transmural extension. Features derived from five texture analysis methods were extracted from the segments on cine images. A support vector machine (SVM) classifier was trained with different combination of texture features to obtain a model that provided optimal classification performance. Results: The best classification on testing set was achieved with local binary patterns features using a 2D + t approach, in which the features are computed by including information of the time dimension available in cine sequences. The best overall area under the receiver operating characteristic curve (AUC) were: 0.849, sensitivity of 92% to detect nonviable segments, 72% to detect viable segments, and 85% to detect remote segments. Conclusion: Nonviable segments can be detected on cine MRI using texture analysis and this may be used as hypothesis for future research aiming to detect the infarcted myocardium by means of a gadolinium-free approach.This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grant BFU2015-64380-C2-2-R, by Instituto de Salud Carlos III and FEDER funds under grants FIS PI14/00271 and PIE15/00013 and by the Generalitat Valenciana under grant PROMETEO/2013/007. The first author, Andres Larroza, was supported by grant FPU12/01140 from the Spanish Ministerio de Educacion, Cultura y Deporte (MECD).Larroza, A.; López-Lereu, M.; Monmeneu, J.; Gavara-Doñate, J.; Chorro, F.; Bodi, V.; Moratal, D. (2018). Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Medical Physics. 45(4):1471-1480. https://doi.org/10.1002/mp.12783S14711480454Castellano, G., Bonilha, L., Li, L. M., & Cendes, F. (2004). Texture analysis of medical images. Clinical Radiology, 59(12), 1061-1069. doi:10.1016/j.crad.2004.07.008Hodgdon, T., McInnes, M. D. F., Schieda, N., Flood, T. A., Lamb, L., & Thornhill, R. E. (2015). Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? Radiology, 276(3), 787-796. doi:10.1148/radiol.2015142215Larroza, A., Moratal, D., Paredes-Sánchez, A., Soria-Olivas, E., Chust, M. L., Arribas, L. A., & Arana, E. (2015). Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. Journal of Magnetic Resonance Imaging, 42(5), 1362-1368. doi:10.1002/jmri.24913Thevenot, J., Hirvasniemi, J., Pulkkinen, P., Määttä, M., Korpelainen, R., Saarakkala, S., & Jämsä, T. (2014). Assessment of Risk of Femoral Neck Fracture with Radiographic Texture Parameters: A Retrospective Study. Radiology, 272(1), 184-191. doi:10.1148/radiol.14131390Kassner, A., & Thornhill, R. E. (2010). Texture Analysis: A Review of Neurologic MR Imaging Applications. American Journal of Neuroradiology, 31(5), 809-816. doi:10.3174/ajnr.a2061Pfeiffer, M. P., & Biederman, R. W. W. (2015). Cardiac MRI. Medical Clinics of North America, 99(4), 849-861. doi:10.1016/j.mcna.2015.02.011Flett, A. S., Hasleton, J., Cook, C., Hausenloy, D., Quarta, G., Ariti, C., … Moon, J. C. (2011). Evaluation of Techniques for the Quantification of Myocardial Scar of Differing Etiology Using Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 4(2), 150-156. doi:10.1016/j.jcmg.2010.11.015Engan K Eftestøl T Ørn S Kvaloy JT Woie L Exploratory data analysis of image texture and statistical features on myocardium and infarction areas in cardiac magnetic resonance images 2010Kotu LP Engan K Eftestøl T Ørn S Woie L Segmentation of scarred and non-scarred myocardium in LG enhanced CMR images using intensity-based textural analysis 2011Kotu, L., Engan, K., Skretting, K., Måløy, F., Ørn, S., Woie, L., & Eftestøl, T. (2013). Probability mapping of scarred myocardium using texture and intensity features in CMR images. BioMedical Engineering OnLine, 12(1), 91. doi:10.1186/1475-925x-12-91Schofield, R., Ganeshan, B., Kozor, R., Nasis, A., Endozo, R., Groves, A., … Moon, J. C. (2016). CMR myocardial texture analysis tracks different etiologies of left ventricular hypertrophy. Journal of Cardiovascular Magnetic Resonance, 18(S1). doi:10.1186/1532-429x-18-s1-o82Larroza, A., Materka, A., López-Lereu, M. P., Monmeneu, J. V., Bodí, V., & Moratal, D. (2017). Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. European Journal of Radiology, 92, 78-83. doi:10.1016/j.ejrad.2017.04.024Baessler, B., Mannil, M., Oebel, S., Maintz, D., Alkadhi, H., & Manka, R. (2018). Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images. Radiology, 286(1), 103-112. doi:10.1148/radiol.2017170213Hervas, A., Ruiz-Sauri, A., de Dios, E., Forteza, M. J., Minana, G., Nunez, J., … Bodi, V. (2015). Inhomogeneity of collagen organization within the fibrotic scar after myocardial infarction: results in a swine model and in human samples. Journal of Anatomy, 228(1), 47-58. doi:10.1111/joa.12395Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of Segment - freely available software for cardiovascular image analysis. BMC Medical Imaging, 10(1). doi:10.1186/1471-2342-10-1Bodí, V., Sanchis, J., López-Lereu, M. P., Losada, A., Núñez, J., Pellicer, M., … Llácer, À. (2005). Usefulness of a Comprehensive Cardiovascular Magnetic Resonance Imaging Assessment for Predicting Recovery of Left Ventricular Wall Motion in the Setting of Myocardial Stunning. Journal of the American College of Cardiology, 46(9), 1747-1752. doi:10.1016/j.jacc.2005.07.039Rangayyan, R. M., Nguyen, T. M., Ayres, F. J., & Nandi, A. K. (2009). Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms. Journal of Digital Imaging, 23(5), 547-553. doi:10.1007/s10278-009-9238-0Materka A Strzelecki M On the importance of MRI nonuniformity correction for texture analysis 2013Collewet, G., Strzelecki, M., & Mariette, F. (2004). Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magnetic Resonance Imaging, 22(1), 81-91. doi:10.1016/j.mri.2003.09.001Vallières M MATLAB programming tools for radiomics analysis https://github.com/mvallieres/radiomicsZhao G Pietikainen M Center for machine vision and signal analysis http://www.cse.oulu.fi/CMV/Downloads/LBPMatlabZwanenburg A Leger S Vallières M Löck S Image biomarker standardisation initiative 2017 http://arxiv.org/abs/1612.07003Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine and Biology, 60(14), 5471-5496. doi:10.1088/0031-9155/60/14/5471Zhao, G., & Pietikainen, M. (2007). Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 915-928. doi:10.1109/tpami.2007.1110Ojala T Pietikäinen M Mäenpää T A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classificationDuan, K.-B., Rajapakse, J. C., Wang, H., & Azuaje, F. (2005). Multiple SVM-RFE for Gene Selection in Cancer Classification With Expression Data. IEEE Transactions on Nanobioscience, 4(3), 228-234. doi:10.1109/tnb.2005.853657Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Machine Learning, 46(1/3), 389-422. doi:10.1023/a:1012487302797Wang, S., & Summers, R. M. (2012). Machine learning and radiology. Medical Image Analysis, 16(5), 933-951. doi:10.1016/j.media.2012.02.005Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. Journal of Statistical Software, 28(5). doi:10.18637/jss.v028.i05Colby J (multiple) Support Vector Machine Recursive Feature Elimination - mSVM-RFE http://www.colbyimaging.com/wiki/statistics/msvm-rfeSalzberg, S. L. (1997). Data Mining and Knowledge Discovery, 1(3), 317-328. doi:10.1023/a:1009752403260Bodí, V., Husser, O., Sanchis, J., Núñez, J., López-Lereu, M. P., Monmeneu, J. V., … Llácer, A. (2010). Contractile Reserve and Extent of Transmural Necrosis in the Setting of Myocardial Stunning: Comparison at Cardiac MR Imaging. Radiology, 255(3), 755-763. doi:10.1148/radiol.10091191Bodi, V., Monmeneu, J. V., Ortiz-Perez, J. T., Lopez-Lereu, M. P., Bonanad, C., Husser, O., … Chorro, F. J. (2016). Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment–Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology, 278(1), 54-63. doi:10.1148/radiol.2015142674Shriki, J. E., Surti, K. S., Farvid, A. F., Lee, C. C., Samadi, S., Hirschbeinv, J., & Colletti, P. M. (2011). Chemical Shift Artifact on Steady-State Free Precession Cardiac Magnetic Resonance Sequences as a Result of Lipomatous Metaplasia: A Novel Finding in Chronic Myocardial Infarctions. Canadian Journal of Cardiology, 27(5), 664.e17-664.e23. doi:10.1016/j.cjca.2010.12.074Goldfarb, J. W., McLaughlin, J., Gray, C. A., & Han, J. (2011). Cyclic CINE-balanced steady-state free precession image intensity variations: Implications for the detection of myocardial edema. Journal of Magnetic Resonance Imaging, 33(3), 573-581. doi:10.1002/jmri.22368Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563-577. doi:10.1148/radiol.201515116

    The Performance of Associative Memory Models with Biologically Inspired Connectivity

    Get PDF
    This thesis is concerned with one important question in artificial neural networks, that is, how biologically inspired connectivity of a network affects its associative memory performance. In recent years, research on the mammalian cerebral cortex, which has the main responsibility for the associative memory function in the brains, suggests that the connectivity of this cortical network is far from fully connected, which is commonly assumed in traditional associative memory models. It is found to be a sparse network with interesting connectivity characteristics such as the “small world network” characteristics, represented by short Mean Path Length, high Clustering Coefficient, and high Global and Local Efficiency. Most of the networks in this thesis are therefore sparsely connected. There is, however, no conclusive evidence of how these different connectivity characteristics affect the associative memory performance of a network. This thesis addresses this question using networks with different types of connectivity, which are inspired from biological evidences. The findings of this programme are unexpected and important. Results show that the performance of a non-spiking associative memory model is found to be predicted by its linear correlation with the Clustering Coefficient of the network, regardless of the detailed connectivity patterns. This is particularly important because the Clustering Coefficient is a static measure of one aspect of connectivity, whilst the associative memory performance reflects the result of a complex dynamic process. On the other hand, this research reveals that improvements in the performance of a network do not necessarily directly rely on an increase in the network’s wiring cost. Therefore it is possible to construct networks with high associative memory performance but relatively low wiring cost. Particularly, Gaussian distributed connectivity in a network is found to achieve the best performance with the lowest wiring cost, in all examined connectivity models. Our results from this programme also suggest that a modular network with an appropriate configuration of Gaussian distributed connectivity, both internal to each module and across modules, can perform nearly as well as the Gaussian distributed non-modular network. Finally, a comparison between non-spiking and spiking associative memory models suggests that in terms of associative memory performance, the implication of connectivity seems to transcend the details of the actual neural models, that is, whether they are spiking or non-spiking neurons
    corecore