120 research outputs found

    Computer-Aided Clinical Decision Support Systems for Atrial Fibrillation

    Get PDF
    Clinical decision support systems (clinical DSSs) are widely used today for various clinical applications such as diagnosis, treatment, and recovery. Clinical DSS aims to enhance the end‐to‐end therapy management for the doctors, and also helps to provide improved experience for patients during each phase of the therapy. The goal of this chapter is to provide an insight into the clinical DSS associated with the highly prevalent heart rhythm disorder, atrial fibrillation (AF). The use of clinical DSS in AF management is ubiquitous, starting from detection of AF through sophisticated electrophysiology treatment procedures, all the way to monitoring the patient\u27s health during follow‐ups. Most of the software associated with AF DSS are developed based on signal processing, image processing, and artificial intelligence techniques. The chapter begins with a brief description of DSS in general and then introduces DSS that are used for various clinical applications. The chapter continues with a background on AF and some relevant mechanisms. Finally, a couple of clinical DSS used today in regard with AF are discussed, along with some proposed methods for potential implementation of clinical DSS for detection of AF, prediction of an AF treatment outcome, and localization of AF targets during a treatment procedure

    Non-invasive identification of atrial fibrillation drivers

    Full text link
    Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. Nowadays the fibrillatory process is known to be provoked by the high-frequency reentrant activity of certain atrial regions that propagates the fibrillatory activity to the rest of the atrial tissue, and the electrical isolation of these key regions has demonstrated its effectiveness in terminating the fibrillatory process. The location of the dominant regions represents a major challenge in the diagnosis and treatment of this arrhythmia. With the aim to detect and locate the fibrillatory sources prior to surgical procedure, non-invasive methods have been developed such as body surface electrical mapping (BSPM) which allows to record with high spatial resolution the electrical activity on the torso surface or the electrocardiographic imaging (ECGI) which allows to non-invasively reconstruct the electrical activity in the atrial surface. Given the novelty of these systems, both technologies suffer from a lack of scientific knowledge about the physical and technical mechanisms that support their operation. Therefore, the aim of this thesis is to increase that knowledge, as well as studying the effectiveness of these technologies for the localization of dominant regions in patients with AF. First, it has been shown that BSPM systems are able to noninvasively identify atrial rotors by recognizing surface rotors after band-pass filtering. Furthermore, the position of such surface rotors is related to the atrial rotor location, allowing the distinction between left or right atrial rotors. Moreover, it has been found that the surface electrical maps in AF suffer a spatial smoothing effect by the torso conductor volume, so the surface electrical activity can be studied with a relatively small number of electrodes. Specifically, it has been seen that 12 uniformly distributed electrodes are sufficient for the correct identification of atrial dominant frequencies, while at least 32 leads are needed for non-invasive identification of atrial rotors. Secondly, the effect of narrowband filtering on the effectiveness of the location of reentrant patterns was studied. It has been found that this procedure allows isolating the reentrant electrical activity caused by the rotor, increasing the detection rate for both invasive and surface maps. However, the spatial smoothing caused by the regularization of the ECGI added to the temporal filtering causes a large increase in the spurious reentrant activity, making it difficult to detect real reentrant patterns. However, it has been found that maps provided by the ECGI without temporal filtering allow the correct detection of reentrant activity, so narrowband filtering should be applied for intracavitary or surface signal only. Finally, we studied the stability of the markers used to detect dominant regions in ECGI, such as frequency maps or the rotor presence. It has been found that in the presence of alterations in the conditions of the inverse problem, such as electrical or geometrical noise, these markers are significantly more stable than the ECGI signal morphology from which they are extracted. In addition, a new methodology for error reduction in the atrial spatial location based on the curvature of the curve L has been proposed. The results presented in this thesis showed that BSPM and ECGI systems allows to non-invasively locate the presence of high-frequency rotors, responsible for the maintenance of AF. This detection has been proven to be unambiguous and robust, and the physical and technical mechanisms that support this behavior have been studied. These results indicate that both non-invasive systems provide information of great clinical value in the treatment of AF, so their use can be helpful for selecting and planning atrial ablation procedures.La fibrilación auricular (FA) es una de las arritmias cardiacas más frecuentes. Hoy en día se sabe que el proceso fibrilatorio está provocado por la actividad reentrante a alta frecuencia de ciertas regiones auriculares que propagan la actividad fibrilatoria en el resto del tejido auricular, y se ha demostrado que el aislamiento eléctrico de estas regiones dominantes permite detener el proceso fibrilatorio. La localización de las regiones dominantes supone un gran reto en el diagnóstico y tratamiento de la FA. Con el objetivo de poder localizar las fuentes fibrilatorias con anterioridad al procedimiento quirúrgico, se han desarrollado métodos no invasivos como la cartografía eléctrica de superficie (CES) que registra con gran resolución espacial la actividad eléctrica en la superficie del torso o la electrocardiografía por imagen (ECGI) que permite reconstruir la actividad eléctrica en la superficie auricular. Dada la novedad de estos sistemas, existe una falta de conocimiento científico sobre los mecanismos físicos y técnicos que sustentan su funcionamiento. Por lo tanto, el objetivo de esta tesis es aumentar dicho conocimiento, así como estudiar la eficacia de ambas tecnologías para la localización de regiones dominantes en pacientes con FA. En primer lugar, ha visto que los sistemas CES permiten identificar rotores auriculares mediante el reconocimiento de rotores superficiales tras el filtrado en banda estrecha. Además, la posición de los rotores superficiales está relacionada con la localización de dichos rotores, permitiendo la distinción entre rotores de aurícula derecha o izquierda. Por otra parte, se ha visto que los mapas eléctricos superficiales durante FA sufren una gran suavizado espacial por el efecto del volumen conductor del torso, lo que permite que la actividad eléctrica superficial pueda ser estudiada con un número relativamente reducido de electrodos. Concretamente, se ha visto que 12 electrodos uniformemente distribuidos son suficientes para una correcta identificación de frecuencias dominantes, mientras que son necesarios al menos 32 para una correcta identificación de rotores auriculares. Por otra parte, también se ha estudiado el efecto del filtrado en banda estrecha sobre la eficacia de la localización de patrones reentrantes. Así, se ha visto que este procedimiento permite aislar la actividad eléctrica reentrante provocada por el rotor, aumentando la tasa de detección tanto para señal obtenida de manera invasiva como para los mapas superficiales. No obstante, este filtrado temporal sobre la señal de ECGI provoca un gran aumento de la actividad reentrante espúrea que dificulta la detección de patrones reentrantes reales. Sin embargo, los mapas ECGI sin filtrado temporal permiten la detección correcta de la actividad reentrante, por lo el filtrado debería ser aplicado únicamente para señal intracavitaria o superficial. Por último, se ha estudiado la estabilidad de los marcadores utilizados en ECGI para detectar regiones dominantes, como son los mapas de frecuencia o la presencia de rotores. Se ha visto que en presencia de alteraciones en las condiciones del problema inverso, como ruido eléctrico o geométrico, estos marcadores son significativamente más estables que la morfología de la propia señal ECGI. Además, se ha propuesto una nueva metodología para la reducción del error en la localización espacial de la aurícula basado en la curvatura de la curva L. Los resultados presentados en esta tesis revelan que los sistemas de CES y ECGI permiten localizar de manera no invasiva la presencia de rotores de alta frecuencia. Esta detección es univoca y robusta, y se han estudiado los mecanismos físicos y técnicos que sustentan dicho comportamiento. Estos resultados indican que ambos sistemas no invasivos proporcionan información de gran valor clínico en el tratamiento de la FA, por lo que su uso puede ser de gran ayuda para la selección y planificaciLa fibril·lació auricular (FA) és una de les arítmies cardíaques més freqüents. Hui en dia es sabut que el procés fibrilatori està provocat per l'activitat reentrant de certes regions auriculars que propaguen l'activitat fibril·latoria a la resta del teixit auricular, i s'ha demostrat que l'aïllament elèctric d'aquestes regions dominants permet aturar el procés fibrilatori. La localització de les regions dominants suposa un gran repte en el diagnòstic i tractament d'aquesta arítmia. Amb l'objectiu de poder localitzar fonts fibril·latories amb anterioritat al procediment quirúrgic s'han desenvolupat mètodes no invasius com la cartografia elèctrica de superfície (CES) que registra amb gran resolució espacial l'activitat elèctrica en la superfície del tors o l'electrocardiografia per imatge (ECGI) que permet obtenir de manera no invasiva l'activitat elèctrica en la superfície auricular. Donada la relativa novetat d'aquests sistemes, existeix una manca de coneixement científic sobre els mecanismes físics i tècnics que sustenten el seu funcionament. Per tant, l'objectiu d'aquesta tesi és augmentar aquest coneixement, així com estudiar l'eficàcia d'aquestes tecnologies per a la localització de regions dominants en pacients amb FA. En primer lloc, s'ha vist que els sistemes CES permeten identificar rotors auriculars mitjançant el reconeixement de rotors superficials després del filtrat en banda estreta. A més, la posició dels rotors superficials està relacionada amb la localització d'aquests rotors, permetent la distinció entre rotors de aurícula dreta o esquerra. També s'ha vist que els mapes elèctrics superficials durant FA pateixen un gran suavitzat espacial per l'efecte del volum conductor del tors, el que permet que l'activitat elèctrica superficial pugui ser estudiada amb un nombre relativament reduït d'elèctrodes. Concretament, s'ha vist que 12 elèctrodes uniformement distribuïts són suficients per a una correcta identificació de freqüències dominants auriculars, mentre que són necessaris almenys 32 per a una correcta identificació de rotors auriculars. D'altra banda, també s'ha estudiat l'efecte del filtrat en banda estreta sobre l'eficàcia de la localització de patrons reentrants. Així, s'ha vist que aquest procediment permet aïllar l'activitat elèctrica reentrant provocada pel rotor, augmentant la taxa de detecció tant pel senyal obtingut de manera invasiva com per als mapes superficials. No obstant això, aquest filtrat temporal sobre el senyal de ECGI provoca un gran augment de l'activitat reentrant espúria que dificulta la detecció de patrons reentrants reals. A més, els mapes proporcionats per la ECGI sense filtrat temporal permeten la detecció correcta de l'activitat reentrant, per la qual cosa el filtrat hauria de ser aplicat únicament per a senyal intracavitària o superficial. Per últim, s'ha estudiat l'estabilitat dels marcadors utilitzats en ECGI per a detectar regions auriculars dominants, com són els mapes de freqüència o la presència de rotors. S'ha vist que en presència d'alteracions en les condicions del problema invers, com soroll elèctric o geomètric, aquests marcadors són significativament més estables que la morfologia del mateix senyal ECGI. A més, s'ha proposat una nova metodologia per a la reducció de l'error en la localització espacial de l'aurícula basat en la curvatura de la corba L. Els resultats presentats en aquesta tesi revelen que els sistemes de CES i ECGI permeten localitzar de manera no invasiva la presència de rotors d'alta freqüència. Aquesta detecció és unívoca i robusta, i s'han estudiat els mecanismes físics i tècnics que sustenten aquest comportament. Aquests resultats indiquen que els dos sistemes no invasius proporcionen informació de gran valor clínic en el tractament de la FA, pel que el seu ús pot ser de gran ajuda per a la selecció i planificació de procediments d'ablació auricular.Rodrigo Bort, M. (2016). Non-invasive identification of atrial fibrillation drivers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75346TESISPremios Extraordinarios de tesis doctorale

    Characterization of Cardiac Electrogram Signals During Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in United States. The most popular treatment for AF is a percutaneous procedure called catheter ablation. Current AF ablation procedures unfortunately have a poor success rate, primarily because the mechanisms involved in AF are incompletely understood even today. Intra-atrial electrograms have previously been shown to provide information on the mechanisms of AF. This thesis focuses on two such mechanisms – AF-sustaining sites known as sustained rotational activities (RotAs), and atrial tissue with unique electrical properties known as myocardial scars. Catheter ablation procedures today construct the 3D electroanatomic map of the left atrium (LA) by maneuvering a conventional Multipolar Diagnostic Catheter (MPDC) along the LA endocardial surface. These procedures are limited to pulmonary vein isolation and other linear ablation performed on various regions of the left atrium (such as roof and mitral isthmus) where the regions are decided based on the atrial anatomy. However, it remains unclear how to utilize the information provided by the MPDC to analyze and characterize the RotAs and scars. Previous electrogram characterization studies mainly use a single bipole rather than MPDCs to characterize the electrograms based on features such as cycle length or dominant frequency from the time or frequency domain. In this thesis we developed novel techniques for investigating the above mentioned mechanisms using signal analysis, mathematical modeling, numerical simulation and clinical experiments, all utilizing MPDC recordings. First, the variations in the total conduction delay (TCD) from MPDC electrograms as the MPDC moves towards a RotA source was investigated. Second, the maximum peak-to-peak amplitudes of MPDC electrograms recorded during AF and NSR were analyzed. This thesis provides insights into methods of characterization of cardiac electrograms and the findings of this thesis could address the current challenges in AF ablation

    Basket-Type Catheters : Diagnostic Pitfalls Caused by Deformation and Limited Coverage

    Get PDF
    Whole-chamber mapping using a 64-pole basket catheter (BC) has become a featured approach for the analysis of excitation patterns during atrial fibrillation. A flexible catheter design avoids perforation but may lead to spline bunching and influence coverage. We aim to quantify the catheter deformation and endocardial coverage in clinical situations and study the effect of catheter size and electrode arrangement using an in silico basket model. Atrial coverage and spline separation were evaluated quantitatively in an ensemble of clinical measurements. A computational model of the BC was implemented including an algorithm to adapt its shape to the atrial anatomy. Two clinically relevant mapping positions in each atrium were assessed in both clinical and simulated data. The simulation environment allowed varying both BC size and electrode arrangement. Results showed that interspline distances of more than 20 mm are common, leading to a coverage of less than 50% of the left atrial (LA) surface. In an ideal in silico scenario with variable catheter designs, a maximum coverage of 65% could be reached. As spline bunching and insufficient coverage can hardly be avoided, this has to be taken into account for interpretation of excitation patterns and development of new panoramic mapping techniques

    Detection of focal source and arrhythmogenic substrate from body surface potentials to guide atrial fibrillation ablation

    Get PDF
    Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120–270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression

    Contributions To The Methodology Of Electrocardiographic Imaging (ECGI) And Application Of ECGI To Study Mechanisms Of Atrial Arrhythmia, Post Myocardial Infarction Electrophysiological Substrate, And Ventricular Tachycardia In Patients

    Get PDF
    ABSTRACT OF THE DISSERTATION Contributions to the Methodology of Electrocardiographic Imaging: ECGI) and Application of ECGI to Study Mechanisms of Atrial Arrhythmia, Post Myocardial Infarction Electrophysiological Substrate, and Ventricular Tachycardia in Patients by Yong Wang Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2009 Professor Yoram Rudy, Chair Electrocardiographic Imaging: ECGI) is a noninvasive imaging modality for cardiac electrophysiology and arrhythmia. ECGI reconstructs epicardial potentials, electrograms and isochrones from body-surface electrocardiograms combined with heart-torso geometry from computed tomography: CT). The application of a new meshless method, the Method of Fundamental Solutions: MFS) is introduced to ECGI with the following major advantages: 1. Elimination of meshing and manual mesh optimization processes, thereby enhancing automation and speeding the ECGI procedure. 2. Elimination of mesh-induced artifacts. 3. Simpler implementation. These properties of MFS enhance the practical application of ECGI as a clinical diagnostic tool. The current ECGI mode of operation is offline with generation of epicardial potential maps delayed to data acquisition. A real time ECGI procedure is proposed, by which the epicardial potentials can be reconstructed while the body surface potential data are acquired: \u3c 1msec/frame) during a clinical procedure. This development enables real-time monitoring, diagnosis, and interactive guidance of intervention for arrhythmia therapy. ECGI is applied to map noninvasively the electrophysiological substrate in eight post-MI patients during sinus rhythm: SR). Contrast-enhanced MRI: ceMRI) is conducted to determine anatomical scar. ECGI imaged regions of electrical scar corresponded closely in location, extent, and morphology to the anatomical scars. In three patients, late diastolic potentials are imaged in the scar epicardial border zone during SR. Scar-related ventricular tachycardia: VT) in two patients are imaged, showing the VT activation sequence in relation to the abnormal electrophysiological substrate. ECGI imaging the substrate in a beat-by-beat fashion could potentially help in noninvasive risk stratification for post-MI arrhythmias and facilitate substrate-based catheter ablation of these arrhythmias. ECGI is applied to eleven consecutive patients referred for VT catheter ablation procedure. ECGI is performed either before: 8 patients) or during: 3 patients) the ablation procedure. Blinded ECGI and invasive electrophysiology: EP) study results are compared. Over a wide range of VT types and locations, ECGI results are consistent with EP data regarding localization of the arrhythmia origin: including myocardial depth) and mechanism: focal, reentrant, fascicular). ECGI also provides mechanistic electrophysiological insights, relating arrhythmia patterns to the myocardial substrate. The study shows ECGI has unique potential clinical advantages, especially for hemodynamically intolerant VT or VT that is difficult to induce. Because it provides local cardiac information, ECGI may aid in better understanding of mechanisms of ventricular arrhythmia. Further prospective trials of ECGI with clinical endpoints are warranted. Many mechanisms for the initiation and perpetuation of atrial fibrillation: AF) have been demonstrated over the last several decades. The tools to study these mechanisms in humans have limitations, the most common being invasiveness of a mapping procedure. In this paper, we present simultaneous noninvasive biatrial epicardial activation sequences of AF in humans, obtained using the Electrocardiographic Imaging: ECGI) system, and analyzed in terms of mechanisms and complexity of activation patterns. We performed ECGI in 36 patients with a diagnosis of AF. To determine ECGI atrial accuracy, atrial pacing from different sites was performed in six patients: 37 pacing events), and ECGI was compared to registered CARTO images. Then, ECGI was performed on all 36 patients during AF and ECGI epicardial maps were analyzed for mechanisms and complexity. ECGI noninvasively imaged the low-amplitude signals of AF in a wide range of patients: 97% procedural success). The spatial accuracy in determining initiation sites as simulated by atrial pacing was ~ 6mm. ECGI imaged many activation patterns of AF, most commonly multiple wavelets: 92%), with pulmonary vein: 69%) and non-pulmonary vein: 62%) trigger sites. Rotor activity was seen rarely: 15%). AF complexity increased with longer clinical history of AF, though the degree of complexity of nonparoxysmal AF varied and overlapped. ECGI offers a way to identify unique epicardial activation patterns of AF in a patient-specific manner. The results are consistent with contemporary animal models of AF mechanisms and highlight the coexistence of a variety of mechanisms among patients

    High-Density Mapping Analysis of Electrical Spatiotemporal Behaviour in Atrial Fibrillation

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), 2022, Universidade de Lisboa, Faculdade de CiênciasDoenças cardiovasculares, tais como arritmias, são a principal causa de morte no mundo, especialmente no Sul e no Este da Ásia, e nos Estados Unidos da América [1]. As arritmas são caracterizadas pela alteração no ritmo sinusal normal do coração. Em particular, a fibrilhação auricular (FA) é a arritmia cardíaca mais comum na prática clínica, contribuindo para mais de 200 mil mortes globalmente em 2017 [2]. Caracteriza-se pela contração rápida e dessincronizada das aurículas, e está associada ao aumento da mortalidade e afecta de forma negativa a qualidade de vida dos pacientes. A FA é geralmente tratada através de medicação, porém quando esta falha, a ablação por cateter é indicada, sendo um tratamento de referência para combater esta patologia. A ablação apresenta uma taxa de sucesso de aproximadamente 50% no primeiro procedimento, sendo necessário efectuar vários procedimentos para aumentar a eficácia do tratamento [3]. A detecção desta patologia envolve, numa primeira fase, a realização de um electrocardiograma (ECG) e, posteriormente um estudo electrofisiológico para saber com precisão onde se localiza e o mecanismo subjacente à mesma. Este último implica o registo da actividade eléctrica através de electrogramas (EGM) locais em diferentes pontos das aurículas e dos ventrículos, com o auxílio de sistemas de mapeamento tridimensionais (3D) electroanatómicos, sendo um procedimento invasivo. Existem diversos métodos lineares e não lineares que permitem a análise dos EGMs nos domínios do tempo, frequência, fase, entre outros, com a finalidade de melhor compreender os mecanismos subjacentes à FA e, consequentemente aumentar a taxa de sucesso do processo de ablação e melhorar a sua eficiência. Esta área de estudo progrediu significativamente, tanto a nível de hardware, como de software. Apesar disso, os métodos desenvolvidos não têm nem acrescentado benefícios adicionais, nem melhorado significativamente a taxa de sucesso do processo de ablação. Existem várias razões para tal, e grande parte deve-se ao facto destes métodos de análise estarem incorporados nos sistemas de mapeamento e o seu software ser exclusivo. Isto leva a que não consigamos perceber como é que os algoritmos funcionam nos diferentes sistemas de mapeamento para comparar as suas diferenças e semelhanças. Devido a estes constrangimentos, os investigadores são compelidos a desenvolver os seus próprios métodos de análise e técnicas de mapeamento, o que leva à existência de uma multitude de métodos e técnicas de mapeamento que parecem ser diferentes entre si, resultando em informação ambígua e conflituosa no que diz respeito aos mecanismos da FA, e a conclusões distintas entre estudos. O sucesso do tratamento poderia aumentar se tivéssemos uma melhor compreensão dos métodos de análise e da sua aplicação no contexto da FA; perceber se os métodos apontam para o mesmo fenómeno de fibrilhação, se existe alguma correlação entre os métodos, e se a informação fornecida pelos mesmos é complementar ou redundante. Assim, o objectivo deste trabalho consistiu em implementar diferentes métodos para analisar os EGMs e a estrutura 3D da aurícula esquerda (AE) de doentes com FA, numa tentativa de responder às questões que motivaram a realização deste projecto. Em última análise, ao observar os mapas 3D da AE tendo uma melhor compreensão dos métodos, poderemos identificar com precisão as regiões na AE responsáveis por iniciar a FA, e ter mais conhecimento sobre os mecanismos responsáveis pela mesma. Desta forma, o processo de ablação poderá alcançar o seu potencial. Para este projecto, foram incluídos os mapas 3D electroanatómicos da AE de dez doentes com FA paroxística ou persistente do hospital de Santa Marta, recolhidos com o sistema de mapeamento CARTO 3. Cada ponto electroanatómico dos mapas inclui as 12 derivações do ECG, e os EGMs unipolares e bipolares registados com o cateter de mapeamento Pentaray de 20 pólos. Porém, apenas os EGMs bipolares foram incluídos na análise. Processaram-se os sinais bipolares e, devido a algumas limitações, foi possível apenas a implementação de dois métodos diferentes para os analisar: um no domínio da frequência – Frequência Dominante (FD) –, e outro no domínio da Teoria da Informação – a entropia de Shannon. De seguida, criaram-se três tipos de mapas 3D electroanatómicos da AE para cada doente: um de voltagem, cuja informação foi adquirida com o sistema de mapeamento, um de FD, e outro de entropia. A informação de cada mapa estava organizada segundo um padrão de cores. Observando os diferentes tipos de mapas da AE paralelamente, foi possível comparar os métodos, e perceber que tipo de informação cada um deles fornecia, numa tentativa de melhor compreender os mecanismos da FA. Foi possível observar em algumas regiões da AE, principalmente nos mapas de voltagem e de FD, a presença de “centros de activação” ou “centros de fibrilhação”, que poderão ser os gatilhos responsáveis por desencadear ou manter o mecanismo de fibrilhação. Para confirmar se de facto aquelas regiões eram os gatilhos de fibrilhação, seria necessário submeter os doentes ao processo de ablação e queimar essas zonas; e posteriormente acompanhar os doentes para observar os efeitos do procedimento e confirmar a hipótese. Contudo, dadas as limitações do trabalho e o facto desta área de investigação ser pouco explorada, é fulcral obter um maior número de estudo comparativos entre mais métodos de diferentes domínios e confirmar se apontam ou não para o mesmo fenómeno de fibrilhação. Apesar de terem sido implementados apenas dois métodos de análise dos EGMs, o projecto permitiu a comparação entre os mesmos, uma área de estudo por onde ainda há muito para investigar. Com mais conhecimento sobre os diferentes métodos, a sua aplicação, inter-relação e adequação no estudo dos mecanismos da FA e das propriedades electrofisiológicas desta patologia, é possível desenvolver procedimentos de ablação mais eficientes e selectivos, de forma a diminuir os riscos e aumentar a taxa de sucesso do tratamento.Atrial fibrillation (AF) is the most frequent cardiac arrhythmia in clinical practice and is described by rapid and irregular contractions of the atria. Despite catheter ablation (CA) being a well-established treatment for AF, it is sub-optimal, with a success rate of approximately 50 % after a single procedure, with some patients requiring multiple procedures to achieve long-term freedom from this pathology. This prompted the proposal and development of various quantitative electrogram (EGM)-based methods along with different mapping systems with their respective mapping techniques, to better understand the mechanisms responsible for initiating and maintaining AF, thus improving ablation outcomes. However, this diversification of methods and tools resulted in disperse and inconsistent data regarding the mechanisms of AF. This work consisted of employing two different methods to analyse the electrograms (EGM): dominant frequency (DF) and Shannon entropy (ShEn). From these EGMs, metrics were then extracted and displayed in colour-coded fashion on a 3D mesh of the left atrium (LA) from patients with paroxysmal or persistent AF. The two methods were compared to understand whether or not these indicated different phenomena/mechanisms, and if these could locate sites suspected of triggering and maintaining AF. The results, while not fully conforming to the literature, allowed the comparison between different EGM analysis methods, a field of study that requires further research. Overall, this project highlighted the limited data available within the topic, hindering our understanding of AF mechanisms and development of more effective and selective ablation procedures to avoid unnecessary complications, and ultimately improve the effects of the treatment's outcomes

    Endocardial activation mapping of human atrial fibrillation

    Get PDF
    Successful ablation of arrhythmias depends upon interpretation of the mechanism. However, in persistent atrial fibrillation (AF) ablation is currently directed towards the mechanism that initiates paroxysmal AF. We sought to address the hypothesis that atrial activation patterns during persistent AF may help determine the underlying mechanism. Activation mapping of AF wavefronts is labor intensive and often restricted to short time segments in limited atrial locations. RETRO-Mapping was developed to identify uniform wavefronts that occur during AF, and summate all wavefront vectors on to an orbital plot. Uniform wavefronts were mapped using RETRO-Mapping during sinus rhythm, atrial tachycardia, and atrial fibrillation, and validated against detailed manual analysis of the same wavefronts with conventional isochronal mapping. RETRO-Mapping was found to have comparable accuracy to isochronal mapping. RETRO-Mapping was then used to investigate atrial activation patterns during persistent AF. Atrial activation patterns demonstrated evidence of spatiotemporal stability over long time periods. Orbital plots created at different time points in the same location remained unchanged. Together with this important discovery, both fractionation and bipolar voltage were also demonstrated to express stability over time. Spatiotemporal stability during persistent AF enables sequential mapping as an acceptable technique. This property also allowed the development of a method for displaying sequentially mapped locations on a single map – RETRO-Choropleth Map. These findings go against the multiple wavelet hypothesis with random activation. Having gained insights in to these stable activation patterns, extensive analysis was undertaken to identify the presence of focal activation. Focal activations were identified during persistent AF. RETRO-Mapping was used to show that adjacent activation patterns were not related to focal activations. Lastly, the effect of pulmonary vein isolation (PVI) was studied by mapping atrial activation patterns before and after PVI. RETRO-Mapping showed that PVI leads to increased organisation of AF in most patients, supporting a mechanistic role of the pulmonary veins in persistent AF. In conclusion, a new technique has been developed and validated for automated activation mapping of persistent AF. These techniques could be used to guide additional ablation strategies beyond PVI for patients with persistent AF.Open Acces

    Targeting the substrate in ablation of persistent atrial fibrillation: Recent lessons and future directions

    Get PDF
    While isolation of the pulmonary veins is firmly established as effective treatment for the majority of paroxysmal atrial fibrillation (AF) patients, there is recognition that patients with persistent AF have substrate for perpetuation of arrhythmia existing outside of the pulmonary veins. Various computational approaches have been used to identify targets for effective ablation of persistent AF. This paper aims to discuss the clinical aspects of computational approaches that aim to identify critical sites for treatment. Various analyses of electrogram characteristics have been performed with this aim. Leading techniques for electrogram analysis are Complex Fractionated Atrial Electrograms (CFAE) and Dominant Frequency (DF). These techniques have been the subject of clinical trials of which the results are discussed. Evaluation of the activation patterns of atria in AF has been another avenue of research. Focal Impulse and Rotor Modulation (FIRM) mapping and forms of Body Surface Mapping aim to characterize multiple atrial wavelets, macro-reentry and focal sources which have been proposed as basic mechanisms perpetuating AF. Both invasive and non-invasive activation mapping techniques are reviewed. The presence of atrial fibrosis causes non-uniform anisotropic impulse propagation. Therefore, identification of fibrosis by imaging techniques is an avenue of potential research. The leading contender for imaging-based techniques is Cardiac Magnetic Resonance (CMR). As this technology advances, improvements in resolution and scar identification have positioned CMR as the mode of choice for analysis of atrial structure. AF has been demonstrated to be associated with obesity, inactivity and diseases of modern life. An opportunity exists for detailed computational analysis of the impact of risk factor modification on atrial substrate. This ranges from microstructural investigation through to examination at a population level via registries and public health interventions. Computational analysis of atrial substrate has moved from basic science toward clinical application. Future directions and potential limitations of such analyses are examined in this review.Martin K. Stiles, Prashanthan Sanders and Dennis H. La
    corecore