11,120 research outputs found

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    Supervised learning with hybrid global optimisation methods

    Get PDF

    Feature Selection for Text and Image Data Using Differential Evolution with SVM and Naïve Bayes Classifiers

    Get PDF
    Classification problems are increasing in various important applications such as text categorization, images, medical imaging diagnosis and bimolecular analysis etc. due to large amount of attribute set. Feature extraction methods in case of large dataset play an important role to reduce the irrelevant feature and thereby increases the performance of classifier algorithm. There exist various methods based on machine learning for text and image classification. These approaches are utilized for dimensionality reduction which aims to filter less informative and outlier data. Therefore, these approaches provide compact representation and computationally better tractable accuracy. At the same time, these methods can be challenging if the search space is doubled multiple time. To optimize such challenges, a hybrid approach is suggested in this paper. The proposed approach uses differential evolution (DE) for feature selection with naïve bayes (NB) and support vector machine (SVM) classifiers to enhance the performance of selected classifier. The results are verified using text and image data which reflects improved accuracy compared with other conventional techniques. A 25 benchmark datasets (UCI) from different domains are considered to test the proposed algorithms.  A comparative study between proposed hybrid classification algorithms are presented in this work. Finally, the experimental result shows that the differential evolution with NB classifier outperforms and produces better estimation of probability terms. The proposed technique in terms of computational time is also feasible

    Multi-Objective Evolutionary Neural Network to Predict Graduation Success at the United States Military Academy

    Get PDF
    This paper presents an evolutionary neural network approach to classify student graduation status based upon selected academic, demographic, and other indicators. A pareto-based, multi-objective evolutionary algorithm utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) fitness evaluation scheme simultaneously evolves connection weights and identifies the neural network topology using network complexity and classification accuracy as objective functions. A combined vector-matrix representation scheme and differential evolution recombination operators are employed. The model is trained, tested, and validated using 5100 student samples with data compiled from admissions records and institutional research databases. The inputs to the evolutionary neural network model are used to classify students as: graduates, late graduates, or non-graduates. Results of the hybrid method show higher mean classification rates (88%) than the current methodology (80%) with a potential savings of $130M. Additionally, the proposed method is more efficient in that a less complex neural network topology is identified by the algorithm
    corecore