4,638 research outputs found

    Fuzzy Side Information Clustering-Based Framework for Effective Recommendations

    Get PDF
    Collaborative filtering (CF) is the most successful and widely implemented algorithm in the area of recommender systems (RSs). It generates recommendations using a set of user-product ratings by matching similarity between the profiles of different users. Computing similarity among user profiles efficiently in case of sparse data is the most crucial component of the CF technique. Data sparsity and accuracy are the two major issues associated with the classical CF approach. In this paper, we try to solve these issues using a novel approach based on the side information (user-product background content) and the Mahalanobis distance measure. The side information has been incorporated into RSs to further improve their performance, especially in the case of data sparsity. However, incorporation of side information into traditional two-dimensional recommender systems would increase the dimensionality and complexity of the system. Therefore, to alleviate the problem of dimensionality, we cluster users based on their side information using k-means clustering algorithm and each user's similarity is computed using the Mahalanobis distance method. Additionally, we use fuzzy sets to represent the side information more efficiently. Results of the experimentation with two benchmark datasets show that our framework improves the recommendations quality and predictive accuracy of both traditional and clustering-based collaborative recommendations

    Collaborative Filtering via Group-Structured Dictionary Learning

    Get PDF
    Structured sparse coding and the related structured dictionary learning problems are novel research areas in machine learning. In this paper we present a new application of structured dictionary learning for collaborative filtering based recommender systems. Our extensive numerical experiments demonstrate that the presented technique outperforms its state-of-the-art competitors and has several advantages over approaches that do not put structured constraints on the dictionary elements.Comment: A compressed version of the paper has been accepted for publication at the 10th International Conference on Latent Variable Analysis and Source Separation (LVA/ICA 2012

    Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach

    Full text link
    We study the Sparse Plus Low-Rank decomposition problem (SLR), which is the problem of decomposing a corrupted data matrix into a sparse matrix of perturbations plus a low-rank matrix containing the ground truth. SLR is a fundamental problem in Operations Research and Machine Learning which arises in various applications, including data compression, latent semantic indexing, collaborative filtering, and medical imaging. We introduce a novel formulation for SLR that directly models its underlying discreteness. For this formulation, we develop an alternating minimization heuristic that computes high-quality solutions and a novel semidefinite relaxation that provides meaningful bounds for the solutions returned by our heuristic. We also develop a custom branch-and-bound algorithm that leverages our heuristic and convex relaxations to solve small instances of SLR to certifiable (near) optimality. Given an input nn-by-nn matrix, our heuristic scales to solve instances where n=10000n=10000 in minutes, our relaxation scales to instances where n=200n=200 in hours, and our branch-and-bound algorithm scales to instances where n=25n=25 in minutes. Our numerical results demonstrate that our approach outperforms existing state-of-the-art approaches in terms of rank, sparsity, and mean-square error while maintaining a comparable runtime

    A Transfer Learning Approach for Cache-Enabled Wireless Networks

    Full text link
    Locally caching contents at the network edge constitutes one of the most disruptive approaches in 55G wireless networks. Reaping the benefits of edge caching hinges on solving a myriad of challenges such as how, what and when to strategically cache contents subject to storage constraints, traffic load, unknown spatio-temporal traffic demands and data sparsity. Motivated by this, we propose a novel transfer learning-based caching procedure carried out at each small cell base station. This is done by exploiting the rich contextual information (i.e., users' content viewing history, social ties, etc.) extracted from device-to-device (D2D) interactions, referred to as source domain. This prior information is incorporated in the so-called target domain where the goal is to optimally cache strategic contents at the small cells as a function of storage, estimated content popularity, traffic load and backhaul capacity. It is shown that the proposed approach overcomes the notorious data sparsity and cold-start problems, yielding significant gains in terms of users' quality-of-experience (QoE) and backhaul offloading, with gains reaching up to 22%22\% in a setting consisting of four small cell base stations.Comment: some small fixes in notatio
    • …
    corecore