4,230 research outputs found

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    Real-time dynamic spectrum management for multi-user multi-carrier communication systems

    Full text link
    Dynamic spectrum management is recognized as a key technique to tackle interference in multi-user multi-carrier communication systems and networks. However existing dynamic spectrum management algorithms may not be suitable when the available computation time and compute power are limited, i.e., when a very fast responsiveness is required. In this paper, we present a new paradigm, theory and algorithm for real-time dynamic spectrum management (RT-DSM) under tight real-time constraints. Specifically, a RT-DSM algorithm can be stopped at any point in time while guaranteeing a feasible and improved solution. This is enabled by the introduction of a novel difference-of-variables (DoV) transformation and problem reformulation, for which a primal coordinate ascent approach is proposed with exact line search via a logarithmicly scaled grid search. The concrete proposed algorithm is referred to as iterative power difference balancing (IPDB). Simulations for different realistic wireline and wireless interference limited systems demonstrate its good performance, low complexity and wide applicability under different configurations.Comment: 14 pages, 9 figures. This work has been submitted to the IEEE for possible publicatio

    DSL: Discriminative Subgraph Learning via Sparse Self-Representation

    Full text link
    The goal in network state prediction (NSP) is to classify the global state (label) associated with features embedded in a graph. This graph structure encoding feature relationships is the key distinctive aspect of NSP compared to classical supervised learning. NSP arises in various applications: gene expression samples embedded in a protein-protein interaction (PPI) network, temporal snapshots of infrastructure or sensor networks, and fMRI coherence network samples from multiple subjects to name a few. Instances from these domains are typically ``wide'' (more features than samples), and thus, feature sub-selection is required for robust and generalizable prediction. How to best employ the network structure in order to learn succinct connected subgraphs encompassing the most discriminative features becomes a central challenge in NSP. Prior work employs connected subgraph sampling or graph smoothing within optimization frameworks, resulting in either large variance of quality or weak control over the connectivity of selected subgraphs. In this work we propose an optimization framework for discriminative subgraph learning (DSL) which simultaneously enforces (i) sparsity, (ii) connectivity and (iii) high discriminative power of the resulting subgraphs of features. Our optimization algorithm is a single-step solution for the NSP and the associated feature selection problem. It is rooted in the rich literature on maximal-margin optimization, spectral graph methods and sparse subspace self-representation. DSL simultaneously ensures solution interpretability and superior predictive power (up to 16% improvement in challenging instances compared to baselines), with execution times up to an hour for large instances.Comment: 9 page

    QuLa: service selection and forwarding table population in service-centric networking using real-life topologies

    Get PDF
    The amount of services located in the network has drastically increased over the last decade which is why more and more datacenters are located at the network edge, closer to the users. In the current Internet it is up to the client to select a destination using a resolution service (Domain Name System, Content Delivery Networks ...). In the last few years, research on Information-Centric Networking (ICN) suggests to put this selection responsibility at the network components; routers find the closest copy of a content object using the content name as input. We extend the principle of ICN to services; service routers forward requests to service instances located in datacenters spread across the network edge. To solve this problem, we first present a service selection algorithm based on both server and network metrics. Next, we describe a method to reduce the state required in service routers while minimizing the performance loss caused by this data reduction. Simulation results based on real-life networks show that we are able to find a near-optimal load distribution with only minimal state required in the service routers

    Guest Editorial: Nonlinear Optimization of Communication Systems

    Get PDF
    Linear programming and other classical optimization techniques have found important applications in communication systems for many decades. Recently, there has been a surge in research activities that utilize the latest developments in nonlinear optimization to tackle a much wider scope of work in the analysis and design of communication systems. These activities involve every “layer” of the protocol stack and the principles of layered network architecture itself, and have made intellectual and practical impacts significantly beyond the established frameworks of optimization of communication systems in the early 1990s. These recent results are driven by new demands in the areas of communications and networking, as well as new tools emerging from optimization theory. Such tools include the powerful theories and highly efficient computational algorithms for nonlinear convex optimization, together with global solution methods and relaxation techniques for nonconvex optimization
    corecore