6,223 research outputs found

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Redefining Community in the Age of the Internet: Will the Internet of Things (IoT) generate sustainable and equitable community development?

    Get PDF
    There is a problem so immense in our built world that it is often not fully realized. This problem is the disconnection between humanity and the physical world. In an era of limitless data and information at our fingertips, buildings, public spaces, and landscapes are divided from us due to their physical nature. Compared with the intense flow of information from our online world driven by the beating engine of the internet, our physical world is silent. This lack of connection not only has consequences for sustainability but also for how we perceive and communicate with our built environment in the modern age. A possible solution to bridge the gap between our physical and online worlds is a technology known as the Internet of Things (IoT). What is IoT? How does it work? Will IoT change the concept of the built environment for a participant within it, and in doing so enhance the dynamic link between humans and place? And what are the implications of IoT for privacy, security, and data for the public good? Lastly, we will identify the most pressing issues existing in the built environment by conducting and analyzing case studies from Pomona College and California State University, Northridge. By analyzing IoT in the context of case studies we can assess its viability and value as a tool for sustainability and equality in communities across the world

    TOWARDS AN UNDERSTANDING OF EFFORTFUL FUNDRAISING EXPERIENCES: USING INTERPRETATIVE PHENOMENOLOGICAL ANALYSIS IN FUNDRAISING RESEARCH

    Get PDF
    Physical-activity oriented community fundraising has experienced an exponential growth in popularity over the past 15 years. The aim of this study was to explore the value of effortful fundraising experiences, from the point of view of participants, and explore the impact that these experiences have on people’s lives. This study used an IPA approach to interview 23 individuals, recognising the role of participants as proxy (nonprofessional) fundraisers for charitable organisations, and the unique organisation donor dynamic that this creates. It also bought together relevant psychological theory related to physical activity fundraising experiences (through a narrative literature review) and used primary interview data to substantiate these. Effortful fundraising experiences are examined in detail to understand their significance to participants, and how such experiences influence their connection with a charity or cause. This was done with an idiographic focus at first, before examining convergences and divergences across the sample. This study found that effortful fundraising experiences can have a profound positive impact upon community fundraisers in both the short and the long term. Additionally, it found that these experiences can be opportunities for charitable organisations to create lasting meaningful relationships with participants, and foster mutually beneficial lifetime relationships with them. Further research is needed to test specific psychological theory in this context, including self-esteem theory, self determination theory, and the martyrdom effect (among others)

    Analysis of reliable deployment of TDOA local positioning architectures

    Get PDF
    .Local Positioning Systems (LPS) are supposing an attractive research topic over the last few years. LPS are ad-hoc deployments of wireless sensor networks for particularly adapt to the environment characteristics in harsh environments. Among LPS, those based on temporal measurements stand out for their trade-off among accuracy, robustness and costs. But, regardless the LPS architecture considered, an optimization of the sensor distribution is required for achieving competitive results. Recent studies have shown that under optimized node distributions, time-based LPS cumulate the bigger error bounds due to synchronization errors. Consequently, asynchronous architectures such as Asynchronous Time Difference of Arrival (A-TDOA) have been recently proposed. However, the A-TDOA architecture supposes the concentration of the time measurement in a single clock of a coordinator sensor making this architecture less versatile. In this paper, we present an optimization methodology for overcoming the drawbacks of the A-TDOA architecture in nominal and failure conditions with regards to the synchronous TDOA. Results show that this optimization strategy allows the reduction of the uncertainties in the target location by 79% and 89.5% and the enhancement of the convergence properties by 86% and 33% of the A-TDOA architecture with regards to the TDOA synchronous architecture in two different application scenarios. In addition, maximum convergence points are more easily found in the A-TDOA in both configurations concluding the benefits of this architecture in LPS high-demanded applicationS

    Walking with the Earth: Intercultural Perspectives on Ethics of Ecological Caring

    Get PDF
    It is commonly believed that considering nature different from us, human beings (qua rational, cultural, religious and social actors), is detrimental to our engagement for the preservation of nature. An obvious example is animal rights, a deep concern for all living beings, including non-human living creatures, which is understandable only if we approach nature, without fearing it, as something which should remain outside of our true home. “Walking with the earth” aims at questioning any similar preconceptions in the wide sense, including allegoric-poetic contributions. We invited 14 authors from 4 continents to express all sorts of ways of saying why caring is so important, why togetherness, being-with each others, as a spiritual but also embodied ethics is important in a divided world

    DEEP REINFORCEMENT LEARNING AND MODEL PREDICTIVE CONTROL APPROACHES FOR THE SCHEDULED OPERATION OF DOMESTIC REFRIGERATORS

    Get PDF
    Excess capacity of the UK’s national grid is widely quoted to be reducing to around 4% over the coming years as a consequence of increased economic growth (and hence power usage) and reductions in power generation plants. There is concern that short term variations in power demand could lead to serious wide-scale disruption on a national scale. This is therefore spawning greater attention on augmenting traditional generation plants with renewable and localized energy storage technologies, and consideration of improved demand side responses (DSR), where power consumers are incentivized to switch off assets when the grid is under pressure. It is estimated, for instance, that refrigeration/HVAC systems alone could account for ~14% of the total UK energy usage, with refrigeration and water heating/cooling systems, in particular, being able to act as real-time ‘buffer’ technologies that can be demand-managed to accommodate transient demands by being switched-off for short periods without damaging their outputs. Large populations of thermostatically controlled loads (TCLs) hold significant potential for performing ancillary services in power systems since they are well-established and widely distributed around the power network. In the domestic sector, refrigerators and freezers collectively constitute a very large electrical load since they are continuously connected and are present in almost most households. The rapid proliferation of the ‘Internet of Things’ (IoT) now affords the opportunity to monitor and visualise smart buildings appliances performance and specifically, schedule the operation of the widely distributed domestic refrigerator and freezers to collectively improve energy efficiency and reduce peak power consumption on the electrical grid. To accomplish this, this research proposes the real-time estimation of the thermal mass of individual refrigerators in a network using on-line parameter identification, and the co-ordinated (ON-OFF) scheduling of the refrigerator compressors to maintain their respective temperatures within specified hysteresis bands—commensurate with accommodating food safety standards. Custom Model Predictive Control (MPC) schemes and a Machine Learning algorithm (Reinforcement Learning) are researched to realize an appropriate scheduling methodology which is implemented through COTS IoT hardware. Benefits afforded by the proposed schemes are investigated through experimental trials which show that the co-ordinated operation of domestic refrigerators can 1) reduce the peak power consumption as seen from the perspective of the electrical power grid (i.e. peak power shaving), 2) can adaptively control the temperature hysteresis band of individual refrigerators to increase operational efficiency, and 3) contribute to a widely distributed aggregated load shed for Demand Side Response purposes in order to aid grid stability. Comparative studies of measurements from experimental trials show that the co-ordinated scheduling of refrigerators allows energy savings of between 19% and 29% compared to their traditional isolated (non-co-operative) operation. Moreover, by adaptively changing the hysteresis bands of individual fridges in response to changes in thermal behaviour, a further 20% of savings in energy are possible at local refrigerator level, thereby providing benefits to both network supplier and individual consumer

    REDESIGNING THE COUNTER UNMANNED SYSTEMS ARCHITECTURE

    Get PDF
    Includes supplementary material. Please contact [email protected] for access.When the Islamic State used Unmanned Aerial Vehicles (UAV) to target coalition forces in 2014, the use of UAVs rapidly expanded, giving weak states and non-state actors an asymmetric advantage over their technologically superior foes. This asymmetry led the Department of Defense (DOD) and the Department of Homeland Security (DHS) to spend vast sums of money on counter-unmanned aircraft systems (C-UAS). Despite the market density, many C-UAS technologies use expensive, bulky, and high-power-consuming electronic attack methods for ground-to-air interdiction. This thesis outlines the current technology used for C-UAS and proposes a defense-in-depth framework using airborne C-UAS patrols outfitted with cyber-attack capabilities. Using aerial interdiction, this thesis develops a novel C-UAS device called the Detachable Drone Hijacker—a low-size, weight, and power C-UAS device designed to deliver cyber-attacks against commercial UAVs using the IEEE 802.11 wireless communication specification. The experimentation results show that the Detachable Drone Hijacker, which weighs 400 grams, consumes one Watt of power, and costs $250, can interdict adversarial UAVs with no unintended collateral damage. This thesis recommends that the DOD and DHS incorporates aerial interdiction to support its C-UAS defense-in-depth, using technologies similar to the Detachable Drone Hijacker.DASN-OE, Washington DC, 20310Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Site Trouble: Asianness and Blackness in Contemporary Cultural Production

    Get PDF
    This project explores the relationships of Asianness and Blackness in racialized geographies. Three onscreen spaces organize my inquiry: the Asian-owned convenience store, the college campus, and the freeway. My argument elucidates the structures—racial, carceral, and spatial—that form the possibilities for popular onscreen racial representation. In the first chapter, this project takes up the convenience store’s mise-en-scùne to route my exploration of Black-Korean conflict, reading Do the Right Thing (1989), the novel Native Speaker, the TV series Kim’s Convenience (2016-2021), and the 2017 film Gook, as well as the documentary A Love Song for Latasha (2019). I present a theorization of Asianness that turns from binary media in/visibility discourses and centers itself on Asian American and Black feminist visions of flourishing. The second chapter analyzes the space of the college campus through the TV series Dear White People (2016-2021) and Grown-ish (2018-present), addressing the seriality of racial structures through student activism and protest. In this chapter I intervene in serial narrative studies and television studies by insisting that contemporary narrative seriality be understood as underpinned by racial logics. In my final chapter I move to the freeway through Karen Tei Yamashita’s novel Tropic of Orange and the 1997 film Strawberry Fields, exploring the Asian American feminist road narrative. In this chapter I theorize Asianness as racial infrastructure capable of both transmitting and blocking the force of white supremacy and conclude by locating fugitive ways of being in racial geographies. Ultimately, my research contends that opacity, refusal, being-otherwise, and experimental form are essential to shaping an Asian American feminist politics in solidarity with Black liberation.Doctor of Philosoph
    • 

    corecore