743 research outputs found

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Leveraging Computer Vision for Applications in Biomedicine and Geoscience

    Get PDF
    Skin cancer is one of the most common types of cancer and is usually classified as either non-melanoma and melanoma skin cancer. Melanoma skin cancer accounts for about half of all skin cancer-related deaths. The 5-year survival rate is 99% when the cancer is detected early but drops to 25% once it becomes metastatic. In other words, the key to preventing death is early detection. Foraminifera are microscopic single-celled organisms that exist in marine environments and are classified as living a benthic or planktic lifestyle. In total, roughly 50,000 species are known to have existed, of which about 9,000 are still living today. Foraminifera are important proxies for reconstructing past ocean and climate conditions and as bio-indicators of anthropogenic pollution. Since the 1800s, the identification and counting of foraminifera have been performed manually. The process is resource-intensive. In this dissertation, we leverage recent advances in computer vision, driven by breakthroughs in deep learning methodologies and scale-space theory, to make progress towards both early detection of melanoma skin cancer and automation of the identification and counting of microscopic foraminifera. First, we investigate the use of hyperspectral images in skin cancer detection by performing a critical review of relevant, peer-reviewed research. Second, we present a novel scale-space methodology for detecting changes in hyperspectral images. Third, we develop a deep learning model for classifying microscopic foraminifera. Finally, we present a deep learning model for instance segmentation of microscopic foraminifera. The works presented in this dissertation are valuable contributions in the fields of biomedicine and geoscience, more specifically, towards the challenges of early detection of melanoma skin cancer and automation of the identification, counting, and picking of microscopic foraminifera

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

    Full text link
    Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PN

    Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons

    Get PDF
    Hyperspectral images (HSI) provide rich information which may not be captured by other sensing technologies and therefore gradually find a wide range of applications. However, they also generate a large amount of irrelevant or redundant data for a specific task. This causes a number of issues including significantly increased computation time, complexity and scale of prediction models mapping the data to semantics (e.g., classification), and the need of a large amount of labelled data for training. Particularly, it is generally difficult and expensive for experts to acquire sufficient training samples in many applications. This paper addresses these issues by exploring a number of classical dimension reduction algorithms in machine learning communities for HSI classification. To reduce the size of training dataset, feature selection (e.g., mutual information, minimal redundancy maximal relevance) and feature extraction (e.g., Principal Component Analysis (PCA), Kernel PCA) are adopted to augment a baseline classification method, Support Vector Machine (SVM). The proposed algorithms are evaluated using a real HSI dataset. It is shown that PCA yields the most promising performance in reducing the number of features or spectral bands. It is observed that while significantly reducing the computational complexity, the proposed method can achieve better classification results over the classic SVM on a small training dataset, which makes it suitable for real-time applications or when only limited training data are available. Furthermore, it can also achieve performances similar to the classic SVM on large datasets but with much less computing time

    Dimension Reduction Aided Hyperspectral Image Classification with a Small-sized Training Dataset : Experimental Comparisons

    Get PDF
    Acknowledgments: This work was supported by Science and Technology Facilities Council (STFC) under Newton fund with grant number ST/N006852/1.Peer reviewedPublisher PD

    Illumination Invariant Deep Learning for Hyperspectral Data

    Get PDF
    Motivated by the variability in hyperspectral images due to illumination and the difficulty in acquiring labelled data, this thesis proposes different approaches for learning illumination invariant feature representations and classification models for hyperspectral data captured outdoors, under natural sunlight. The approaches integrate domain knowledge into learning algorithms and hence does not rely on a priori knowledge of atmospheric parameters, additional sensors or large amounts of labelled training data. Hyperspectral sensors record rich semantic information from a scene, making them useful for robotics or remote sensing applications where perception systems are used to gain an understanding of the scene. Images recorded by hyperspectral sensors can, however, be affected to varying degrees by intrinsic factors relating to the sensor itself (keystone, smile, noise, particularly at the limits of the sensed spectral range) but also by extrinsic factors such as the way the scene is illuminated. The appearance of the scene in the image is tied to the incident illumination which is dependent on variables such as the position of the sun, geometry of the surface and the prevailing atmospheric conditions. Effects like shadows can make the appearance and spectral characteristics of identical materials to be significantly different. This degrades the performance of high-level algorithms that use hyperspectral data, such as those that do classification and clustering. If sufficient training data is available, learning algorithms such as neural networks can capture variability in the scene appearance and be trained to compensate for it. Learning algorithms are advantageous for this task because they do not require a priori knowledge of the prevailing atmospheric conditions or data from additional sensors. Labelling of hyperspectral data is, however, difficult and time-consuming, so acquiring enough labelled samples for the learning algorithm to adequately capture the scene appearance is challenging. Hence, there is a need for the development of techniques that are invariant to the effects of illumination that do not require large amounts of labelled data. In this thesis, an approach to learning a representation of hyperspectral data that is invariant to the effects of illumination is proposed. This approach combines a physics-based model of the illumination process with an unsupervised deep learning algorithm, and thus requires no labelled data. Datasets that vary both temporally and spatially are used to compare the proposed approach to other similar state-of-the-art techniques. The results show that the learnt representation is more invariant to shadows in the image and to variations in brightness due to changes in the scene topography or position of the sun in the sky. The results also show that a supervised classifier can predict class labels more accurately and more consistently across time when images are represented using the proposed method. Additionally, this thesis proposes methods to train supervised classification models to be more robust to variations in illumination where only limited amounts of labelled data are available. The transfer of knowledge from well-labelled datasets to poorly labelled datasets for classification is investigated. A method is also proposed for enabling small amounts of labelled samples to capture the variability in spectra across the scene. These samples are then used to train a classifier to be robust to the variability in the data caused by variations in illumination. The results show that these approaches make convolutional neural network classifiers more robust and achieve better performance when there is limited labelled training data. A case study is presented where a pipeline is proposed that incorporates the methods proposed in this thesis for learning robust feature representations and classification models. A scene is clustered using no labelled data. The results show that the pipeline groups the data into clusters that are consistent with the spatial distribution of the classes in the scene as determined from ground truth

    Multispectral Imaging For Face Recognition Over Varying Illumination

    Get PDF
    This dissertation addresses the advantage of using multispectral narrow-band images over conventional broad-band images for improved face recognition under varying illumination. To verify the effectiveness of multispectral images for improving face recognition performance, three sequential procedures are taken into action: multispectral face image acquisition, image fusion for multispectral and spectral band selection to remove information redundancy. Several efficient image fusion algorithms are proposed and conducted on spectral narrow-band face images in comparison to conventional images. Physics-based weighted fusion and illumination adjustment fusion make good use of spectral information in multispectral imaging process. The results demonstrate that fused narrow-band images outperform the conventional broad-band images under varying illuminations. In the case where multispectral images are acquired over severe changes in daylight, the fused images outperform conventional broad-band images by up to 78%. The success of fusing multispectral images lies in the fact that multispectral images can separate the illumination information from the reflectance of objects which is impossible for conventional broad-band images. To reduce the information redundancy among multispectral images and simplify the imaging system, distance-based band selection is proposed where a quantitative evaluation metric is defined to evaluate and differentiate the performance of multispectral narrow-band images. This method is proved to be exceptionally robust to parameter changes. Furthermore, complexity-guided distance-based band selection is proposed using model selection criterion for an automatic selection. The performance of selected bands outperforms the conventional images by up to 15%. From the significant performance improvement via distance-based band selection and complexity-guided distance-based band selection, we prove that specific facial information carried in certain narrow-band spectral images can enhance face recognition performance compared to broad-band images. In addition, both algorithms are proved to be independent to recognition engines. Significant performance improvement is achieved by proposed image fusion and band selection algorithms under varying illumination including outdoor daylight conditions. Our proposed imaging system and image processing algorithms lead to a new avenue of automatic face recognition system towards a better recognition performance than the conventional peer system over varying illuminations

    Service robotics and machine learning for close-range remote sensing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore