183 research outputs found

    A novel approach to fault detection for fuzzy stochastic systems with nonhomogeneous processes

    Get PDF
    In this paper, we consider a class of fuzzy stochastic systems with nonhomogeneous jump processes. Our focus is on the design of a fuzzy fault detection filter that is sensitive to faults but robust against unknown inputs. Furthermore, the error filtering system is stochastically stable. With reference to an H1 performance index and a new performance index, sufficient conditions to ensure the existence of a fuzzy robust fault detection filter are derived. Simulation studies are carried out, showing that the proposed fuzzy robust FD filter can rapidly detect the faults correctly

    Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities

    Get PDF
    Reliability assessment refers to the process of evaluating reliability of components or systems during their lifespan or prior to their implementation. In the manufacturing industry, the reliability of systems is directly linked to production efficiency, product quality, energy consumption, and other crucial performance indicators. Therefore, reliability plays a critical role in every aspect of manufacturing. In this review, we provide a comprehensive overview of the most significant advancements and trends in the assessment of manufacturing system reliability. For this, we also consider the three main facets of reliability analysis of cyber–physical systems, i.e., hardware, software, and human-related reliability. Beyond the overview of literature, we derive challenges and opportunities for reliability assessment of manufacturing systems based on the reviewed literature. Identified challenges encompass aspects like failure data availability and quality, fast-paced technological advancements, and the increasing complexity of manufacturing systems. In turn, the opportunities include the potential for integrating various assessment methods, and leveraging data to automate the assessment process and to increase accuracy of derived reliability models

    Maintenance models applied to wind turbines. A comprehensive overview

    Get PDF
    Producción CientíficaWind power generation has been the fastest-growing energy alternative in recent years, however, it still has to compete with cheaper fossil energy sources. This is one of the motivations to constantly improve the efficiency of wind turbines and develop new Operation and Maintenance (O&M) methodologies. The decisions regarding O&M are based on different types of models, which cover a wide range of scenarios and variables and share the same goal, which is to minimize the Cost of Energy (COE) and maximize the profitability of a wind farm (WF). In this context, this review aims to identify and classify, from a comprehensive perspective, the different types of models used at the strategic, tactical, and operational decision levels of wind turbine maintenance, emphasizing mathematical models (MatMs). The investigation allows the conclusion that even though the evolution of the models and methodologies is ongoing, decision making in all the areas of the wind industry is currently based on artificial intelligence and machine learning models

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Practical Methods for Optimizing Equipment Maintenance Strategies Using an Analytic Hierarchy Process and Prognostic Algorithms

    Get PDF
    Many large organizations report limited success using Condition Based Maintenance (CbM). This work explains some of the causes for limited success, and recommends practical methods that enable the benefits of CbM. The backbone of CbM is a Prognostics and Health Management (PHM) system. Use of PHM alone does not ensure success; it needs to be integrated into enterprise level processes and culture, and aligned with customer expectations. To integrate PHM, this work recommends a novel life cycle framework, expanding the concept of maintenance into several levels beginning with an overarching maintenance strategy and subordinate policies, tactics, and PHM analytical methods. During the design and in-service phases of the equipment’s life, an organization must prove that a maintenance policy satisfies specific safety and technical requirements, business practices, and is supported by the logistic and resourcing plan to satisfy end-user needs and expectations. These factors often compete with each other because they are designed and considered separately, and serve disparate customers. This work recommends using the Analytic Hierarchy Process (AHP) as a practical method for consolidating input from stakeholders and quantifying the most preferred maintenance policy. AHP forces simultaneous consideration of all factors, resolving conflicts in the trade-space of the decision process. When used within the recommended life cycle framework, it is a vehicle for justifying the decision to transition from generalized high-level concepts down to specific lower-level actions. This work demonstrates AHP using degradation data, prognostic algorithms, cost data, and stakeholder input to select the most preferred maintenance policy for a paint coating system. It concludes the following for this particular system: A proactive maintenance policy is most preferred, and a predictive (CbM) policy is more preferred than predeterminative (time-directed) and corrective policies. A General Path prognostic Model with Bayesian updating (GPM) provides the most accurate prediction of the Remaining Useful Life (RUL). Long periods between inspections and use of categorical variables in inspection reports severely limit the accuracy in predicting the RUL. In summary, this work recommends using the proposed life cycle model, AHP, PHM, a GPM model, and embedded sensors to improve the success of a CbM policy

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort

    ISBIS 2016: Meeting on Statistics in Business and Industry

    Get PDF
    This Book includes the abstracts of the talks presented at the 2016 International Symposium on Business and Industrial Statistics, held at Barcelona, June 8-10, 2016, hosted at the Universitat Politècnica de Catalunya - Barcelona TECH, by the Department of Statistics and Operations Research. The location of the meeting was at ETSEIB Building (Escola Tecnica Superior d'Enginyeria Industrial) at Avda Diagonal 647. The meeting organizers celebrated the continued success of ISBIS and ENBIS society, and the meeting draw together the international community of statisticians, both academics and industry professionals, who share the goal of making statistics the foundation for decision making in business and related applications. The Scientific Program Committee was constituted by: David Banks, Duke University Amílcar Oliveira, DCeT - Universidade Aberta and CEAUL Teresa A. Oliveira, DCeT - Universidade Aberta and CEAUL Nalini Ravishankar, University of Connecticut Xavier Tort Martorell, Universitat Politécnica de Catalunya, Barcelona TECH Martina Vandebroek, KU Leuven Vincenzo Esposito Vinzi, ESSEC Business Schoo

    Yield and Reliability Analysis for Nanoelectronics

    Get PDF
    As technology has continued to advance and more break-through emerge, semiconductor devices with dimensions in nanometers have entered into all spheres of our lives. Accordingly, high reliability and high yield are very much a central concern to guarantee the advancement and utilization of nanoelectronic products. However, there appear to be some major challenges related to nanoelectronics in regard to the field of reliability: identification of the failure mechanisms, enhancement of the low yields of nano products, and management of the scarcity and secrecy of available data [34]. Therefore, this dissertation investigates four issues related to the yield and reliability of nanoelectronics. Yield and reliability of nanoelectronics are affected by defects generated in the manufacturing processes. An automatic method using model-based clustering has been developed to detect the defect clusters and identify their patterns where the distribution of the clustered defects is modeled by a new mixture distribution of multivariate normal distributions and principal curves. The new mixture model is capable of modeling defect clusters with amorphous, curvilinear, and linear patterns. We evaluate the proposed method using both simulated and experimental data and promising results have been obtained. Yield is one of the most important performance indexes for measuring the success of nano fabrication and manufacturing. Accurate yield estimation and prediction is essential for evaluating productivity and estimating production cost. This research studies advanced yield modeling approaches which consider the spatial variations of defects or defect counts. Results from real wafer map data show that the new yield models provide significant improvement in yield estimation compared to the traditional Poisson model and negative binomial model. The ultra-thin SiO2 is a major factor limiting the scaling of semiconductor devices. High-k gate dielectric materials such as HfO2 will replace SiO2 in future generations of MOS devices. This study investigates the two-step breakdown mechanisms and breakdown sequences of double-layered high-k gate stacks by monitoring the relaxation of the dielectric films. The hazard rate is a widely used metric for measuring the reliability of electronic products. This dissertation studies the hazard rate function of gate dielectrics breakdown. A physically feasible failure time distribution is used to model the time-to-breakdown data and a Bayesian approach is adopted in the statistical analysis

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment

    AI-enabled modeling and monitoring of data-rich advanced manufacturing systems

    Get PDF
    The infrastructure of cyber-physical systems (CPS) is based on a meta-concept of cybermanufacturing systems (CMS) that synchronizes the Industrial Internet of Things (IIoTs), Cloud Computing, Industrial Control Systems (ICSs), and Big Data analytics in manufacturing operations. Artificial Intelligence (AI) can be incorporated to make intelligent decisions in the day-to-day operations of CMS. Cyberattack spaces in AI-based cybermanufacturing operations pose significant challenges, including unauthorized modification of systems, loss of historical data, destructive malware, software malfunctioning, etc. However, a cybersecurity framework can be implemented to prevent unauthorized access, theft, damage, or other harmful attacks on electronic equipment, networks, and sensitive data. The five main cybersecurity framework steps are divided into procedures and countermeasure efforts, including identifying, protecting, detecting, responding, and recovering. Given the major challenges in AI-enabled cybermanufacturing systems, three research objectives are proposed in this dissertation by incorporating cybersecurity frameworks. The first research aims to detect the in-situ additive manufacturing (AM) process authentication problem using high-volume video streaming data. A side-channel monitoring approach based on an in-situ optical imaging system is established, and a tensor-based layer-wise texture descriptor is constructed to describe the observed printing path. Subsequently, multilinear principal component analysis (MPCA) is leveraged to reduce the dimension of the tensor-based texture descriptor, and low-dimensional features can be extracted for detecting attack-induced alterations. The second research work seeks to address the high-volume data stream problems in multi-channel sensor fusion for diverse bearing fault diagnosis. This second approach proposes a new multi-channel sensor fusion method by integrating acoustics and vibration signals with different sampling rates and limited training data. The frequency-domain tensor is decomposed by MPCA, resulting in low-dimensional process features for diverse bearing fault diagnosis by incorporating a Neural Network classifier. By linking the second proposed method, the third research endeavor is aligned to recovery systems of multi-channel sensing signals when a substantial amount of missing data exists due to sensor malfunction or transmission issues. This study has leveraged a fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization method that enables to capture of multi-linear interaction (channels × signals) among latent factors of sensor signals and imputes missing entries based on observed signals
    corecore