2,026 research outputs found

    Seeing 'REDD'?: Forests, Climate Change Mitigation and the Rights of Indigenous Peoples

    Get PDF
    Examines proposals for reducing emissions from deforestation and forest degradation (REDD) and their failure to protect indigenous peoples' rights or to address forest governance problems. Calls for talks to include civil society and indigenous peoples

    Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi- Temporal LiDAR Datasets

    Get PDF
    Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks) projects, which require an accurate monitoring of their carbon stocks or aboveground biomass (AGB). Our study objective was to evaluate multi-temporal LiDAR measurements of a tropical forested peatland area in Central Kalimantan on Borneo. Canopy height and AGB dynamics were quantified with a special focus on unaffected, selective logged and burned forests. More than 11,000 ha were surveyed with airborne LiDAR in 2007 and 2011. In a first step, the comparability of these datasets was examined and canopy height models were created. Novel AGB regression models were developed on the basis of field inventory measurements and LiDAR derived height histograms for 2007 (r(2) = 0.77, n = 79) and 2011 (r(2) = 0.81, n = 53), taking the different point densities into account. Changes in peat swamp forests were identified by analyzing multispectral imagery. Unaffected forests accumulated on average 20 t/ha AGB with a canopy height increase of 2.3 m over the four year time period. Selective logged forests experienced an average AGB loss of 55 t/ha within 30 m and 42 t/ha within 50 m of detected logging trails, although the mean canopy height increased by 0.5 m and 1.0 m, respectively. Burned forests lost 92% of the initial biomass. These results demonstrate the great potential of repetitive airborne LiDAR surveys to precisely quantify even small scale AGB and canopy height dynamics in remote tropical forests, thereby featuring the needs of REDD+

    The Role and Need for Space-Based Forest Biomass-Related Measurements in Environmental Management and Policy

    Get PDF
    The achievement of international goals and national commitments related to forest conservation and management, climate change, and sustainable development requires credible, accurate, and reliable monitoring of stocks and changes in forest biomass and carbon. Most prominently, the Paris Agreement on Climate Change and the United Nations’ Sustainable Development Goals in particular require data on biomass to monitor progress. Unprecedented opportunities to provide forest biomass data are created by a series of upcoming space-based missions, many of which provide open data targeted at large areas and better spatial resolution biomass monitoring than has previously been achieved. We assess various policy needs for biomass data and recommend a long-term collaborative effort among forest biomass data producers and users to meet these needs. A gap remains, however, between what can be achieved in the research domain and what is required to support policy making and meet reporting requirements. There is no single biomass dataset that serves all users in terms of definition and type of biomass measurement, geographic area, and uncertainty requirements, and whether there is need for the most recent up-to-date biomass estimate or a long-term biomass trend. The research and user communities should embrace the potential strength of the multitude of upcoming missions in combination to provide for these varying needs and to ensure continuity for long-term data provision which one-off research missions cannot provide. International coordination bodies such as Global Forest Observations Initiative (GFOI), Committee on Earth Observation Satellites (CEOS), and Global Observation of Forest Cover and Land Dynamics (GOFC‐GOLD) will be integral in addressing these issues in a way that fulfils these needs in a timely fashion. Further coordination work should particularly look into how space-based data can be better linked with field reference data sources such as forest plot networks, and there is also a need to ensure that reference data cover a range of forest types, management regimes, and disturbance regimes worldwide

    Forests and climate change: adaptation and mitigation

    Get PDF
    ETFRN news No. 50: Forests and Climate Change: adaptation and mitigation. This newsletter contains interesting materials for those who think about the question how to proceed with forests and climate change after Copenhagen, with or without an agreement. Here below are presented some observations from this newsletter: • Adaptation and mitigation are separate issues in the climate discussions, but in forest practice they are two sides of the same coin. • We need forest management directed at the realization of different objectives at the same time, we do not need pure ‘carbon forests’. Not addressing ‘people’ and ‘planet’ considerations is increasingly seen – by both the public and private sector – as a business risk. • Not all countries will be able to comply with REDD rules in the short term. The voluntary carbon market will remain important. • REDD is an opportunity and a risk for local communities. Risks should be made transparent, and open and equal participation by communities in design and decision-making should be promoted • REDD and other forest-based climate change mitigation measures are likely to be low-cost and effective in the short to medium term. Some stakeholders fear that forests may become a too-cheap mitigation option and corrupt the overall climate agreement. In most calculations, however, the costs of developing, operating and managing the institutional system required to produce credible and sustainable forest carbon credits are not internalized in forest carbon prices. If they were, forest carbon prices would become much higher and more realistic. • The role of forests must be clarified and articulated in National Adaptation Programs of Action (NAPAs). At present most political attention and financing is focused on REDD, and, in general, on climate mitigation. Only recently has the concern for the role of forests in adaptation gained ground; this emanates from the growing recognition that climate change will happen anyway. Moreover, climate change will affect the most vulnerable ecosystems and poorer regions. • There is a clear need for harmonization and coherence in the certification market (SFM, and carbon, fair trade etc.). Certification is not necessarily the only credible basis for payment. As illustrated in this issue, mutual trust can be an alternative, particularly for small-scale initiatives that cannot afford the high transaction costs of certification
    corecore