890 research outputs found

    Fractal Array Antennas and Applications

    Get PDF
    Modern celestial and other advanced wireless communication systems require feasible array antennas with reconfigurable multibeams, broadband, high end of coverage, high gain, less side-lobe level with wider side-lobe level angles, better signal-to-noise ratio and small in size than conventionally achievable. This has initiated array antenna research in different tracks, one of which is by using fractal array antennas. The investigation on fractal-shaped antennas is basically focused on two fundamental areas such as the analysis and design of fractal antenna elements and the application of fractal geometric technology to the design of array antennas. These recursively generated antennas provide new insights into the antenna properties due to their self-similar behaviour. Owing to the feasible geometric construction and advanced properties, fractal antennas find applications in advanced wireless communications, MIMO radars, satellite communications and space observations. This work concentrated here is primarily aimed on the design of fractal array antennas using concentric elliptical ring sub-array fractal geometric design methodology and the reduction of total number of antenna elements at higher expansion factors of both conventional and proposed fractal array antennas

    Bandwidth Optimization of Microstrip Patch Antenna- A Basic Overview

    Get PDF
    An antenna is a very important device in wireless applications. It converts the electrical energy into RF signal at the transmitter and RF signal into electrical energy at the receiver side. A micro strip antenna consists of a rectangular patch on a ground plane separated by dielectric substrate. The patch in the antenna is made of a conducting material Cu (Copper) or Au (Gold) and this can be in any shape of rectangular, circular, triangular, elliptical or some other common shape. Researches of past few year shows that, various work on Microstrip Patch Antenna is attentive on designing compact sized Microstrip Antenna with efficiency and bandwidth optimized. But inherently Microstrip Patch Antenna have narrow bandwidth so to enhance bandwidth various techniques are engaged. Today’s Communication devices need several applications which require higher bandwidth; such as mobile phones these days are getting thinner and smarter but many applications supported by them require higher bandwidth, so microstrip antenna used for performing this operation should provide wider bandwidth as well as their shape should be more efficient and size should be compact so that it should occupy less space while keeping the size of device as small as possible. In this review paper, a review of different techniques used for bandwidth optimization & various shapes of compact and broadband microstrip patch antenna is given

    Analysis and Life Cycle Assessment of Printed Antennas for Sustainable Wireless Systems

    Get PDF
    Siirretty Doriast

    Methods to Design Microstrip Antennas for Modern Applications

    Get PDF

    Ultra-Wideband Antenna

    Get PDF
    No abstract available

    Multiband Antennas Design Techniques for 5G Networks: Present and Future Research Directions

    Get PDF
    With the development of wireless communication system has demanded compact wireless devices that allow more space to integrate the other electronics components. Advancement in technology creates challenges in implementing antenna for multiple RF band with a wide range of frequencies. With the advancement of optimization technique we can improve the antenna design as well as provide us the motivation of analyzing the existing studies in order to categorize and synthesize them in a meaningful manner. The objective of this paper contributes in two ways. First, it provides the research and development trends and novel approaches in design of multiband MIMO, smart reconfigurable and defected ground structure (DGS) antenna techniques for wireless system. Secondly, it highlights unique design issue reported in literature. The proposed paper aim is filling the gap in the literature and providing the researcher a useful reference

    Design and development of triangular, spiral, and fractal antennas for radio frequency identification tags

    Get PDF
    This dissertation reports on the design and development of three compact, non-meandered microstrip patch antennas for ultra high frequency (UHF) radio frequency identification (RFID) applications. The monopole antennas considered in this work are an inset-fed triangular antenna, one arm Archimedes spiral antenna and a Half-Sierpinski fractal antenna. These antennas with small length to width ratios (\u3c 2/1), can be the preferred choice, in the tagging of small size consumer end products, over the ubiquitous meandered dipole antenna (length/width \u3e 5/1), which is often the antenna of choice, due to its high gain for UHF RFID applications. The lengths and widths of all three antennas are less than 5.5 cm. Earlier reports of planar antennas for RFID applications in the UHF range have lengths larger than 9 cm on one side or are developed on a rigid substrate. All three antennas have a surface area of about 30 cm2 and are designed for a flexible polyimide substrate. The new antennas satisfy the requirement of a voltage standing wave ratio (VSWR) \u3c 2 and exhibit a gain close to or greater than 0 dBi at the operation frequency of 915 MHz. All three antennas have a return-loss less than -10 dB at 915 MHz and a -10 dB bandwidth greater than 12 MHz. While the triangular and spiral antennas display peak gains of over 2 dBi, the fractal antenna has a gain close to 0 dBi (-0.64 dBi). The effect of ground geometry on the radiation performance of the antennas has been analyzed using ANSOFT Designer software. Slots, aligned to the top patch were introduced in the antenna ground plane to increase the gain of the antennas. The fabricated and tested antennas were then employed in the transmission-delay-line-based passive radio-frequency identification tag. The location of the antenna with respect to the transmission line on the tag was found to affect the radiation pattern of the antenna. A circular disc monopole antenna having a gain of 8.88 dBi and having a -10 dB bandwidth greater than 300 MHz was employed to transmit and receive the interrogating and back-scattered signals, respectively. The generation of bits, employing On-Off Keying (OOK) modulation technique was successfully demonstrated. The tag, fabricated with the triangular antenna is found to perform the best

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Fractal Antenna Applications

    Get PDF
    Non

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems
    • …
    corecore