293 research outputs found

    Risk Analysis for Offshore Wind Turbines Using Aggregation Operators and VIKOR

    Get PDF
    In various engineering actions, potential hazards are reduced, calculated, or controlled using a variety of risk analysis methodologies. The FMEA, or Failure Mode and Effects Analysis, is a very efficient strategy that may be used in this situation. When evaluating safety concerns, failure modes\u27 likely causes and consequences are considered. Serious failures in the FMEA are identified using the Risk Priority Number (RPN). The RPN considers the effect of the probability of occurrence, probability of detection and severity by multiplying these three parameters. However, because of the formula\u27s various flaws, it is frequently criticized. In the current work, a hybrid approach using ViseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and geometric averaging of ordered weights (OWGA) as an aggregation operator is used to assess risk for offshore wind turbines. While the OWGA technique is used to provide weight to risk indices, the VIKOR method is used to assess the relevance of failure modes of offshore wind turbine components. The method\u27s final findings show it solves the issues with the traditional RPN technique and produces more logical outcomes

    Multi-criteria decision making support tools for maintenance of marine machinery systems

    Get PDF
    PhD ThesisFor ship systems to remain reliable and safe they must be effectively maintained through a sound maintenance management system. The three major elements of maintenance management systems are; risk assessment, maintenance strategy selection and maintenance task interval determination. The implementation of these elements will generally determine the level of ship system safety and reliability. Reliability Centred Maintenance (RCM) is one method that can be used to optimise maintenance management systems. However the tools used within the framework of the RCM methodology have limitations which may compromise the efficiency of RCM in achieving the desired results. This research presents the development of tools to support the RCM methodology and improve its effectiveness in marine maintenance system applications. Each of the three elements of the maintenance management system has been considered in turn. With regard to risk assessment, two Multi-Criteria Decision Making techniques (MCDM); Vlsekriterijumska Optimizacija Ikompromisno Resenje, meaning: Multi-criteria Optimization and Compromise Solution (VIKOR) and Compromise Programming (CP) have been integrated into Failure Mode and Effects Analysis (FMEA) along with a novel averaging technique which allows the use of incomplete or imprecise failure data. Three hybrid MCDM techniques have then been compared for maintenance strategy selection; an integrated Delphi-Analytical Hierarchy Process (AHP) methodology, an integrated Delphi-AHP-PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluation) methodology and an integrated Delphi-AHP-TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methodology. Maintenance task interval determination has been implemented using a MCDM framework integrating a delay time model to determine the optimum inspection interval and using the age replacement model for the scheduled replacement tasks. A case study based on a marine Diesel engine has been developed with input from experts in the field to demonstrate the effectiveness of the proposed methodologies.Tertiary Education Trust Fund (TETFUND), a scholarship body of the Federal Republic of Nigeria for providing the fund for this research. My gratitude also goes to Federal University of Petroleum Resource, Effurun, Nigeria for giving me the opportunity to be a beneficiary of the scholarship

    VIKOR Technique:A Systematic Review of the State of the Art Literature on Methodologies and Applications

    Get PDF
    The main objective of this paper is to present a systematic review of the VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR) method in several application areas such as sustainability and renewable energy. This study reviewed a total of 176 papers, published in 2004 to 2015, from 83 high-ranking journals; most of which were related to Operational Research, Management Sciences, decision making, sustainability and renewable energy and were extracted from the “Web of Science and Scopus” databases. Papers were classified into 15 main application areas. Furthermore, papers were categorized based on the nationalities of authors, dates of publications, techniques and methods, type of studies, the names of the journals and studies purposes. The results of this study indicated that more papers on VIKOR technique were published in 2013 than in any other year. In addition, 13 papers were published about sustainability and renewable energy fields. Furthermore, VIKOR and fuzzy VIKOR methods, had the first rank in use. Additionally, the Journal of Expert Systems with Applications was the most significant journal in this study, with 27 publications on the topic. Finally, Taiwan had the first rank from 22 nationalities which used VIKOR technique

    Designing a Framework for Target-Site Assignment in Naval Combat Management

    Get PDF
    In this study, using operational research techniques, a model has been presented to assess battlefield threat, to prioritise aggressive targets, to evaluate the capability of own sites and the risks of the conflict with the targets, to define conflict scenarios and finally to select the best scenario using an assignment model. The above proceedings were added as an intermediate phase of target-site assignment, called ‘deciding the best conflict scenario’, to the ‘threat assessment’ and ‘weapon-target assignment’ in the naval combat management system. For each of the own site, the data collected from the environment together with the panels of experts are shown in a two-dimensional matrix, in which the four areas of the matrix represent the conflict scenarios. Considering that the study was done in a simulated environment, the expert’s verification and the convergence of the results in Monte Carlo method were used to validate the research. The proposed model can offer optimised decision to the operational commander through predicting the battlefield and managing the site’s capacity and the interaction in between during the combat

    Risk Assessment and Management of Petroleum Transportation Systems Operations

    Get PDF
    Petroleum Transportation Systems (PTSs) have a significant impact on the flow of crude oil within a Petroleum Supply Chain (PSC), due to the great demand on this natural product. Such systems are used for safe movement of crude and/or refined products from starting points (i.e. production sites or storage tanks), to their final destinations, via land or sea transportation. PTSs are vulnerable to several risks because they often operate in a dynamic environment. Due to this environment, many potential risks and uncertainties are involved. Not only having a direct effect on the product flow within PSC, PTSs accidents could also have severe consequences for the humans, businesses, and the environment. Therefore, safe operations of the key systems such as port, ship and pipeline, are vital for the success of PTSs. This research introduces an advanced approach to ensure safety of PTSs. This research proposes multiple network analysis, risk assessment, uncertainties treatment and decision making techniques for dealing with potential hazards and operational issues that are happening within the marine ports, ships, or pipeline transportation segments within one complete system. The main phases of the developed framework are formulated in six steps. In the first phase of the research, the hazards in PTSs operations that can lead to a crude oil spill are identified through conducting an extensive review of literature and experts’ knowledge. In the second phase, a Fuzzy Rule-Based Bayesian Reasoning (FRBBR) and Hugin software are applied in the new context of PTSs to assess and prioritise the local PTSs failures as one complete system. The third phase uses Analytic Hierarchy Process (AHP) in order to determine the weight of PTSs local factors. In the fourth phase, network analysis approach is used to measure the importance of petroleum ports, ships and pipelines systems globally within Petroleum Transportation Networks (PTNs). This approach can help decision makers to measure and detect the critical nodes (ports and transportation routes) within PTNs. The fifth phase uses an Evidential Reasoning (ER) approach and Intelligence Decision System (IDS) software, to assess hazards influencing on PTSs as one complete system. This research developed an advance risk-based framework applied ER approach due to its ability to combine the local/internal and global/external risk analysis results of the PTSs. To complete the cycle of this study, the best mitigating strategies are introduced and evaluated by incorporating VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and AHP to rank the risk control options. The novelty of this framework provides decision makers with realistic and flexible results to ensure efficient and safe operations for PTSs

    A toolset for complex decision making in analyze phase of Lean Six Sigma Project: A case validation

    Get PDF
    The analyze phase of Lean Six Sigma (LSS) project is an important phase where the project heads and organizational directors need to select the critical issues for further improvements. The present work is primarily focused on analyze phase of LSS project to prioritized the Critical to Quality (CTQs) in a particular case industry. The CTQs prioritization is being done based on the five evaluation criteria found from the literature. The weights of the criteria are determined through the Modified Digital Logic (MDL) method. The identified CTQs in assembly section of case industry have been ranked through the Grey Relation Analysis (GRA) under fuzzy environment. The results of the study have been validated using fuzzy VIKOR. It is found that the ‘cost’ criterion is the most significant among other criteria with MDL weight of 0.3. Through fuzzy-GRA, out of ten identified CTQs, non availability of rack system is found to be the most critical issue in assembly section of case industry. The perceptions of industrial manager and production head of case industry are strongly in favor of the obtained results and has implemented the suggested solutions.To sustain in the competitive environment and produce quality product at right time, organizations need to control their CTQs as per their criticality. For this, the decision making becomes quite complex to select the most critical factors due to the fascinating nature of various criteria and sub-criteria. The present study is the first attempt that has implemented the multi-criteria decision-making approach in analyze phase of LSS project

    A MODIFIED FMEA APPROACH BASED INTEGRATED DECISION FRAMEWORK FOR OVERCOMING THE PROBLEMS OF SUDDEN FAILURE AND ACCIDENTAL HAZARDS IN TURBINE AND ALTERNATOR UNIT

    Get PDF
    The proposed work presents a novel integrated decision framework, based on Intuitionistic Fuzzy (IF)- Failure Mode & Effect Analysis (IF-FMEA), and IF-Technique for Order of Preference by Similarity to Ideal Solution (IF-TOPSIS) approaches for analysing the failure risk issues of Turbine and Alternator Unit (TAU) in a chemical treatment-based sugar process industry. The proposed novel IF-FMEA approach-based modelling overcomes the various demerits of traditional FMEA approaches which are faced during the identification of critical failure causes based on Risk Priority Number (RPN) outputs. On the basis of detailed qualitative information related to plant operation, FMEA sheet was developed and linguistic ratings were collected against three risk factors such as probability of Occurrence (O), Severity (S), and Detection (D). IF- Hybrid Weighted Euclidean Distance (IFHWED) score has been computed to rank all listed failure causes under three risk factors. The ranking results based on IF-FMEA approach has been compared with the well existed IF-TOPSIS approach for evaluating the accuracy of proposed modelling results. Sensitivity analysis has been also done for checking the robustness of the framework. The analysis results were provided to maintenance executives of the TAU unit to frame optimum maintenance plan for overcoming the problems of sudden breakdown. The analysis results are also applicable to TAU systems which are installed in other chemical process industries globally.

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems
    corecore