452 research outputs found

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    Learning Deep Neural Networks for Enhanced Prostate Histological Image Analysis

    Get PDF
    In recent years, deep convolutional neural networks (CNNs) have shown promise for improving prostate cancer diagnosis by enabling quantitative histopathology through digital pathology. However, there are a number of factors that limit the widespread adoption and clinical utility of deep learning for digital pathology. One of these limitations is the requirement for large labelled training datasets which are expensive to construct due to limited availability of the requisite expertise. Additionally, digital pathology applications typically require the digitisation of histological slides at high magnifications. This process can be challenging especially when digitising large histological slides such as prostatectomies. This work studies and addresses these issues in two important applications of digital pathology: prostate nuclei detection and cell type classification. We study the performance of CNNs at different magnifications and demonstrate that it is possible to perform nuclei detection in low magnification prostate histopathology using CNNs with minimal loss in accuracy. We then study the training of prostate nuclei detectors in the small data setting and demonstrate that although it is possible to train nuclei detectors with minimal data, the models will be sensitive to hyperparameter choice and therefore may not generalise well. Instead, we show that pre-training the CNNs with colon histology data makes them more robust to hyperparameter choice. We then study the CNN performance for prostate cell type classification using supervised, transfer and semi-supervised learning in the small data setting. Our results show that transfer learning can be detrimental to performance but semi-supervised learning is able to provide significant improvements to the learning curve, allowing the training of neural networks with modest amounts of labelled data. We then propose a novel semi-supervised learning method called Deeply-supervised Exemplar CNNs and demonstrate their ability to improve the cell type classifier learning curves at a much better rate than previous semi-supervised neural network methods
    • …
    corecore