1,976 research outputs found

    Automatically generated summaries of sports videos based on semantic content

    Get PDF
    The sport has been a part of our lives since the beginning of times, whether we are spectators or participants. The diffusion and increase of multimedia platforms made the consumption of these contents available to everyone. Sports videos appeal to a large population all around the world and have become an important form of multimedia content that is streamed over the Internet and television networks. Moreover, sport content creators want to provide the users with relevant information such as live commentary, summarization of the games in form of text or video using automatic tools.As a result, MOG-Technologies wants to create a tool capable of summarizing football matches based on semantic content, and this problem was explored in the scope of this Dissertation. The main objective is to convert the television football commentator's speech into text taking advantage of Google's Speech-to-Text tool. Several machine learning models were then tested to classify sentences into important events. For the model training, a dataset was created, combining 43 games transcription from different television channels also from 72 games provided by Google Search timeline commentary, the combined dataset contains 3260 sentences. To validate the proposed solution the accuracy and f1 score were extracted for each machine learning model.The results show that the developed tool is capable of predicting events in live events, with low error rate. Also, combining multiple sources, not only the sport commentator speech, will help to increase the performance of the tool. It is important to notice that the dataset created during this Dissertation will allow MOG-Technologies to expand and perfect the concept discussed in this project

    Audio-visual football video analysis, from structure detection to attention analysis

    Get PDF
    Sport video is an important video genre. Content-based sports video analysis attracts great interest from both industry and academic fields. A sports video is characterised by repetitive temporal structures, relatively plain contents, and strong spatio-temporal variations, such as quick camera switches and swift local motions. It is necessary to develop specific techniques for content-based sports video analysis to utilise these characteristics. For an efficient and effective sports video analysis system, there are three fundamental questions: (1) what are key stories for sports videos; (2) what incurs viewer’s interest; and (3) how to identify game highlights. This thesis is developed around these questions. We approached these questions from two different perspectives and in turn three research contributions are presented, namely, replay detection, attack temporal structure decomposition, and attention-based highlight identification. Replay segments convey the most important contents in sports videos. It is an efficient approach to collect game highlights by detecting replay segments. However, replay is an artefact of editing, which improves with advances in video editing tools. The composition of replay is complex, which includes logo transitions, slow motions, viewpoint switches and normal speed video clips. Since logo transition clips are pervasive in game collections of FIFA World Cup 2002, FIFA World Cup 2006 and UEFA Championship 2006, we take logo transition detection as an effective replacement of replay detection. A two-pass system was developed, including a five-layer adaboost classifier and a logo template matching throughout an entire video. The five-layer adaboost utilises shot duration, average game pitch ratio, average motion, sequential colour histogram and shot frequency between two neighbouring logo transitions, to filter out logo transition candidates. Subsequently, a logo template is constructed and employed to find all transition logo sequences. The precision and recall of this system in replay detection is 100% in a five-game evaluation collection. An attack structure is a team competition for a score. Hence, this structure is a conceptually fundamental unit of a football video as well as other sports videos. We review the literature of content-based temporal structures, such as play-break structure, and develop a three-step system for automatic attack structure decomposition. Four content-based shot classes, namely, play, focus, replay and break were identified by low level visual features. A four-state hidden Markov model was trained to simulate transition processes among these shot classes. Since attack structures are the longest repetitive temporal unit in a sports video, a suffix tree is proposed to find the longest repetitive substring in the label sequence of shot class transitions. These occurrences of this substring are regarded as a kernel of an attack hidden Markov process. Therefore, the decomposition of attack structure becomes a boundary likelihood comparison between two Markov chains. Highlights are what attract notice. Attention is a psychological measurement of “notice ”. A brief survey of attention psychological background, attention estimation from vision and auditory, and multiple modality attention fusion is presented. We propose two attention models for sports video analysis, namely, the role-based attention model and the multiresolution autoregressive framework. The role-based attention model is based on the perception structure during watching video. This model removes reflection bias among modality salient signals and combines these signals by reflectors. The multiresolution autoregressive framework (MAR) treats salient signals as a group of smooth random processes, which follow a similar trend but are filled with noise. This framework tries to estimate a noise-less signal from these coarse noisy observations by a multiple resolution analysis. Related algorithms are developed, such as event segmentation on a MAR tree and real time event detection. The experiment shows that these attention-based approach can find goal events at a high precision. Moreover, results of MAR-based highlight detection on the final game of FIFA 2002 and 2006 are highly similar to professionally labelled highlights by BBC and FIFA

    #REVAL: a semantic evaluation framework for hashtag recommendation

    Full text link
    Automatic evaluation of hashtag recommendation models is a fundamental task in many online social network systems. In the traditional evaluation method, the recommended hashtags from an algorithm are firstly compared with the ground truth hashtags for exact correspondences. The number of exact matches is then used to calculate the hit rate, hit ratio, precision, recall, or F1-score. This way of evaluating hashtag similarities is inadequate as it ignores the semantic correlation between the recommended and ground truth hashtags. To tackle this problem, we propose a novel semantic evaluation framework for hashtag recommendation, called #REval. This framework includes an internal module referred to as BERTag, which automatically learns the hashtag embeddings. We investigate on how the #REval framework performs under different word embedding methods and different numbers of synonyms and hashtags in the recommendation using our proposed #REval-hit-ratio measure. Our experiments of the proposed framework on three large datasets show that #REval gave more meaningful hashtag synonyms for hashtag recommendation evaluation. Our analysis also highlights the sensitivity of the framework to the word embedding technique, with #REval based on BERTag more superior over #REval based on FastText and Word2Vec.Comment: 18 pages, 4 figure

    Anomaly Detection, Rule Adaptation and Rule Induction Methodologies in the Context of Automated Sports Video Annotation.

    Get PDF
    Automated video annotation is a topic of considerable interest in computer vision due to its applications in video search, object based video encoding and enhanced broadcast content. The domain of sport broadcasting is, in particular, the subject of current research attention due to its fixed, rule governed, content. This research work aims to develop, analyze and demonstrate novel methodologies that can be useful in the context of adaptive and automated video annotation systems. In this thesis, we present methodologies for addressing the problems of anomaly detection, rule adaptation and rule induction for court based sports such as tennis and badminton. We first introduce an HMM induction strategy for a court-model based method that uses the court structure in the form of a lattice for two related modalities of singles and doubles tennis to tackle the problems of anomaly detection and rectification. We also introduce another anomaly detection methodology that is based on the disparity between the low-level vision based classifiers and the high-level contextual classifier. Another approach to address the problem of rule adaptation is also proposed that employs Convex hulling of the anomalous states. We also investigate a number of novel hierarchical HMM generating methods for stochastic induction of game rules. These methodologies include, Cartesian product Label-based Hierarchical Bottom-up Clustering (CLHBC) that employs prior information within the label structures. A new constrained variant of the classical Chinese Restaurant Process (CRP) is also introduced that is relevant to sports games. We also propose two hybrid methodologies in this context and a comparative analysis is made against the flat Markov model. We also show that these methods are also generalizable to other rule based environments

    Unsupervised quantification of entity consistency between photos and text in real-world news

    Get PDF
    Das World Wide Web und die sozialen Medien übernehmen im heutigen Informationszeitalter eine wichtige Rolle für die Vermittlung von Nachrichten und Informationen. In der Regel werden verschiedene Modalitäten im Sinne der Informationskodierung wie beispielsweise Fotos und Text verwendet, um Nachrichten effektiver zu vermitteln oder Aufmerksamkeit zu erregen. Kommunikations- und Sprachwissenschaftler erforschen das komplexe Zusammenspiel zwischen Modalitäten seit Jahrzehnten und haben unter Anderem untersucht, wie durch die Kombination der Modalitäten zusätzliche Informationen oder eine neue Bedeutungsebene entstehen können. Die Anzahl gemeinsamer Konzepte oder Entitäten (beispielsweise Personen, Orte und Ereignisse) zwischen Fotos und Text stellen einen wichtigen Aspekt für die Bewertung der Gesamtaussage und Bedeutung eines multimodalen Artikels dar. Automatisierte Ansätze zur Quantifizierung von Bild-Text-Beziehungen können für zahlreiche Anwendungen eingesetzt werden. Sie ermöglichen beispielsweise eine effiziente Exploration von Nachrichten, erleichtern die semantische Suche von Multimedia-Inhalten in (Web)-Archiven oder unterstützen menschliche Analysten bei der Evaluierung der Glaubwürdigkeit von Nachrichten. Allerdings gibt es bislang nur wenige Ansätze, die sich mit der Quantifizierung von Beziehungen zwischen Fotos und Text beschäftigen. Diese Ansätze berücksichtigen jedoch nicht explizit die intermodalen Beziehungen von Entitäten, welche eine wichtige Rolle in Nachrichten darstellen, oder basieren auf überwachten multimodalen Deep-Learning-Techniken. Diese überwachten Lernverfahren können ausschließlich die intermodalen Beziehungen von Entitäten detektieren, die in annotierten Trainingsdaten enthalten sind. Um diese Forschungslücke zu schließen, wird in dieser Arbeit ein unüberwachter Ansatz zur Quantifizierung der intermodalen Konsistenz von Entitäten zwischen Fotos und Text in realen multimodalen Nachrichtenartikeln vorgestellt. Im ersten Teil dieser Arbeit werden neuartige Verfahren auf Basis von Deep Learning zur Extrahierung von Informationen aus Fotos vorgestellt, um Ereignisse (Events), Orte, Zeitangaben und Personen automatisch zu erkennen. Diese Verfahren bilden eine wichtige Voraussetzung, um die Beziehungen von Entitäten zwischen Bild und Text zu bewerten. Zunächst wird ein Ansatz zur Ereignisklassifizierung präsentiert, der neuartige Optimierungsfunktionen und Gewichtungsschemata nutzt um Ontologie-Informationen aus einer Wissensdatenbank in ein Deep-Learning-Verfahren zu integrieren. Das Training erfolgt anhand eines neu vorgestellten Datensatzes, der 570.540 Fotos und eine Ontologie mit 148 Ereignistypen enthält. Der Ansatz übertrifft die Ergebnisse von Referenzsystemen die keine strukturierten Ontologie-Informationen verwenden. Weiterhin wird ein DeepLearning-Ansatz zur Schätzung des Aufnahmeortes von Fotos vorgeschlagen, der Kontextinformationen über die Umgebung (Innen-, Stadt-, oder Naturaufnahme) und von Erdpartitionen unterschiedlicher Granularität verwendet. Die vorgeschlagene Lösung übertrifft die bisher besten Ergebnisse von aktuellen Forschungsarbeiten, obwohl diese deutlich mehr Fotos zum Training verwenden. Darüber hinaus stellen wir den ersten Datensatz zur Schätzung des Aufnahmejahres von Fotos vor, der mehr als eine Million Bilder aus den Jahren 1930 bis 1999 umfasst. Dieser Datensatz wird für das Training von zwei Deep-Learning-Ansätzen zur Schätzung des Aufnahmejahres verwendet, welche die Aufgabe als Klassifizierungs- und Regressionsproblem behandeln. Beide Ansätze erzielen sehr gute Ergebnisse und übertreffen Annotationen von menschlichen Probanden. Schließlich wird ein neuartiger Ansatz zur Identifizierung von Personen des öffentlichen Lebens und ihres gemeinsamen Auftretens in Nachrichtenfotos aus der digitalen Bibliothek Internet Archiv präsentiert. Der Ansatz ermöglicht es unstrukturierte Webdaten aus dem Internet Archiv mit Metadaten, beispielsweise zur semantischen Suche, zu erweitern. Experimentelle Ergebnisse haben die Effektivität des zugrundeliegenden Deep-Learning-Ansatzes zur Personenerkennung bestätigt. Im zweiten Teil dieser Arbeit wird ein unüberwachtes System zur Quantifizierung von BildText-Beziehungen in realen Nachrichten vorgestellt. Im Gegensatz zu bisherigen Verfahren liefert es automatisch neuartige Maße der intermodalen Konsistenz für verschiedene Entitätstypen (Personen, Orte und Ereignisse) sowie den Gesamtkontext. Das System ist nicht auf vordefinierte Datensätze angewiesen, und kann daher mit der Vielzahl und Diversität von Entitäten und Themen in Nachrichten umgehen. Zur Extrahierung von Entitäten aus dem Text werden geeignete Methoden der natürlichen Sprachverarbeitung eingesetzt. Examplarbilder für diese Entitäten werden automatisch aus dem Internet beschafft. Die vorgeschlagenen Methoden zur Informationsextraktion aus Fotos werden auf die Nachrichten- und heruntergeladenen Exemplarbilder angewendet, um die intermodale Konsistenz von Entitäten zu quantifizieren. Es werden zwei Aufgaben untersucht um die Qualität des vorgeschlagenen Ansatzes in realen Anwendungen zu bewerten. Experimentelle Ergebnisse für die Dokumentverifikation und die Beschaffung von Nachrichten mit geringer (potenzielle Fehlinformation) oder hoher multimodalen Konsistenz zeigen den Nutzen und das Potenzial des Ansatzes zur Unterstützung menschlicher Analysten bei der Untersuchung von Nachrichten.In today’s information age, the World Wide Web and social media are important sources for news and information. Different modalities (in the sense of information encoding) such as photos and text are typically used to communicate news more effectively or to attract attention. Communication scientists, linguists, and semioticians have studied the complex interplay between modalities for decades and investigated, e.g., how their combination can carry additional information or add a new level of meaning. The number of shared concepts or entities (e.g., persons, locations, and events) between photos and text is an important aspect to evaluate the overall message and meaning of an article. Computational models for the quantification of image-text relations can enable many applications. For example, they allow for more efficient exploration of news, facilitate semantic search and multimedia retrieval in large (web) archives, or assist human assessors in evaluating news for credibility. To date, only a few approaches have been suggested that quantify relations between photos and text. However, they either do not explicitly consider the cross-modal relations of entities – which are important in the news – or rely on supervised deep learning approaches that can only detect the cross-modal presence of entities covered in the labeled training data. To address this research gap, this thesis proposes an unsupervised approach that can quantify entity consistency between photos and text in multimodal real-world news articles. The first part of this thesis presents novel approaches based on deep learning for information extraction from photos to recognize events, locations, dates, and persons. These approaches are an important prerequisite to measure the cross-modal presence of entities in text and photos. First, an ontology-driven event classification approach that leverages new loss functions and weighting schemes is presented. It is trained on a novel dataset of 570,540 photos and an ontology with 148 event types. The proposed system outperforms approaches that do not use structured ontology information. Second, a novel deep learning approach for geolocation estimation is proposed that uses additional contextual information on the environmental setting (indoor, urban, natural) and from earth partitions of different granularity. The proposed solution outperforms state-of-the-art approaches, which are trained with significantly more photos. Third, we introduce the first large-scale dataset for date estimation with more than one million photos taken between 1930 and 1999, along with two deep learning approaches that treat date estimation as a classification and regression problem. Both approaches achieve very good results that are superior to human annotations. Finally, a novel approach is presented that identifies public persons and their co-occurrences in news photos extracted from the Internet Archive, which collects time-versioned snapshots of web pages that are rarely enriched with metadata relevant to multimedia retrieval. Experimental results confirm the effectiveness of the deep learning approach for person identification. The second part of this thesis introduces an unsupervised approach capable of quantifying image-text relations in real-world news. Unlike related work, the proposed solution automatically provides novel measures of cross-modal consistency for different entity types (persons, locations, and events) as well as the overall context. The approach does not rely on any predefined datasets to cope with the large amount and diversity of entities and topics covered in the news. State-of-the-art tools for natural language processing are applied to extract named entities from the text. Example photos for these entities are automatically crawled from the Web. The proposed methods for information extraction from photos are applied to both news images and example photos to quantify the cross-modal consistency of entities. Two tasks are introduced to assess the quality of the proposed approach in real-world applications. Experimental results for document verification and retrieval of news with either low (potential misinformation) or high cross-modal similarities demonstrate the feasibility of the approach and its potential to support human assessors to study news

    Audiovisual processing for sports-video summarisation technology

    Get PDF
    In this thesis a novel audiovisual feature-based scheme is proposed for the automatic summarization of sports-video content The scope of operability of the scheme is designed to encompass the wide variety o f sports genres that come under the description ‘field-sports’. Given the assumption that, in terms of conveying the narrative of a field-sports-video, score-update events constitute the most significant moments, it is proposed that their detection should thus yield a favourable summarisation solution. To this end, a generic methodology is proposed for the automatic identification of score-update events in field-sports-video content. The scheme is based on the development of robust extractors for a set of critical features, which are shown to reliably indicate their locations. The evidence gathered by the feature extractors is combined and analysed using a Support Vector Machine (SVM), which performs the event detection process. An SVM is chosen on the basis that its underlying technology represents an implementation of the latest generation of machine learning algorithms, based on the recent advances in statistical learning. Effectively, an SVM offers a solution to optimising the classification performance of a decision hypothesis, inferred from a given set of training data. Via a learning phase that utilizes a 90-hour field-sports-video trainmg-corpus, the SVM infers a score-update event model by observing patterns in the extracted feature evidence. Using a similar but distinct 90-hour evaluation corpus, the effectiveness of this model is then tested genencally across multiple genres of fieldsports- video including soccer, rugby, field hockey, hurling, and Gaelic football. The results suggest that in terms o f the summarization task, both high event retrieval and content rejection statistics are achievable

    Term-community-based topic detection with variable resolution

    Get PDF
    Network-based procedures for topic detection in huge text collections offer an intuitive alternative to probabilistic topic models. We present in detail a method that is especially designed with the requirements of domain experts in mind. Like similar methods, it employs community detection in term co-occurrence graphs, but it is enhanced by including a resolution parameter that can be used for changing the targeted topic granularity. We also establish a term ranking and use semantic word-embedding for presenting term communities in a way that facilitates their interpretation. We demonstrate the application of our method with a widely used corpus of general news articles and show the results of detailed social-sciences expert evaluations of detected topics at various resolutions. A comparison with topics detected by Latent Dirichlet Allocation is also included. Finally, we discuss factors that influence topic interpretation.Comment: 31 pages, 6 figure

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl

    Towards Multimodal Prediction of Spontaneous Humour: A Novel Dataset and First Results

    Full text link
    Humour is a substantial element of human affect and cognition. Its automatic understanding can facilitate a more naturalistic human-device interaction and the humanisation of artificial intelligence. Current methods of humour detection are solely based on staged data making them inadequate for 'real-world' applications. We address this deficiency by introducing the novel Passau-Spontaneous Football Coach Humour (Passau-SFCH) dataset, comprising of about 11 hours of recordings. The Passau-SFCH dataset is annotated for the presence of humour and its dimensions (sentiment and direction) as proposed in Martin's Humor Style Questionnaire. We conduct a series of experiments, employing pretrained Transformers, convolutional neural networks, and expert-designed features. The performance of each modality (text, audio, video) for spontaneous humour recognition is analysed and their complementarity is investigated. Our findings suggest that for the automatic analysis of humour and its sentiment, facial expressions are most promising, while humour direction can be best modelled via text-based features. The results reveal considerable differences among various subjects, highlighting the individuality of humour usage and style. Further, we observe that a decision-level fusion yields the best recognition result. Finally, we make our code publicly available at https://www.github.com/EIHW/passau-sfch. The Passau-SFCH dataset is available upon request.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible (Major Revision
    corecore