134 research outputs found

    A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition

    Get PDF
    Human gait recognition (HGR) shows high importance in the area of video surveillance due to remote access and security threats. HGR is a technique commonly used for the identification of human style in daily life. However, many typical situations like change of clothes condition and variation in view angles degrade the system performance. Lately, different machine learning (ML) techniques have been introduced for video surveillance which gives promising results among which deep learning (DL) shows best performance in complex scenarios. In this article, an integrated framework is proposed for HGR using deep neural network and fuzzy entropy controlled skewness (FEcS) approach. The proposed technique works in two phases: In the first phase, deep convolutional neural network (DCNN) features are extracted by pre-trained CNN models (VGG19 and AlexNet) and their information is mixed by parallel fusion approach. In the second phase, entropy and skewness vectors are calculated from fused feature vector (FV) to select best subsets of features by suggested FEcS approach. The best subsets of picked features are finally fed to multiple classifiers and finest one is chosen on the basis of accuracy value. The experiments were carried out on four well-known datasets, namely, AVAMVG gait, CASIA A, B and C. The achieved accuracy of each dataset was 99.8, 99.7, 93.3 and 92.2%, respectively. Therefore, the obtained overall recognition results lead to conclude that the proposed system is very promising

    Intelligent Computing: The Latest Advances, Challenges and Future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners

    Biaxial Nematic Order in Liver Tissue

    Get PDF
    Understanding how biological cells organize to form complex functional tissues is a question of key interest at the interface between biology and physics. The liver is a model system for a complex three-dimensional epithelial tissue, which performs many vital functions. Recent advances in imaging methods provide access to experimental data at the subcellular level. Structural details of individual cells in bulk tissues can be resolved, which prompts for new analysis methods. In this thesis, we use concepts from soft matter physics to elucidate and quantify structural properties of mouse liver tissue. Epithelial cells are structurally anisotropic and possess a distinct apico-basal cell polarity that can be characterized, in most cases, by a vector. For the parenchymal cells of the liver (hepatocytes), however, this is not possible. We therefore develop a general method to characterize the distribution of membrane-bound proteins in cells using a multipole decomposition. We first verify that simple epithelial cells of the kidney are of vectorial cell polarity type and then show that hepatocytes are of second order (nematic) cell polarity type. We propose a method to quantify orientational order in curved geometries and reveal lobule-level patterns of aligned cell polarity axes in the liver. These lobule-level patterns follow, on average, streamlines defined by the locations of larger vessels running through the tissue. We show that this characterizes the liver as a nematic liquid crystal with biaxial order. We use the quantification of orientational order to investigate the effect of specific knock-down of the adhesion protein Integrin ß-1. Building upon these observations, we study a model of nematic interactions. We find that interactions among neighboring cells alone cannot account for the observed ordering patterns. Instead, coupling to an external field yields cell polarity fields that closely resemble the experimental data. Furthermore, we analyze the structural properties of the two transport networks present in the liver (sinusoids and bile canaliculi) and identify a nematic alignment between the anisotropy of the sinusoid network and the nematic cell polarity of hepatocytes. We propose a minimal lattice-based model that captures essential characteristics of network organization in the liver by local rules. In conclusion, using data analysis and minimal theoretical models, we found that the liver constitutes an example of a living biaxial liquid crystal.:1. Introduction 1 1.1. From molecules to cells, tissues and organisms: multi-scale hierarchical organization in animals 1 1.2. The liver as a model system of complex three-dimensional tissue 2 1.3. Biology of tissues 5 1.4. Physics of tissues 9 1.4.1. Continuum descriptions 11 1.4.2. Discrete models 11 1.4.3. Two-dimensional case study: planar cell polarity in the fly wing 15 1.4.4. Challenges of three-dimensional models for liver tissue 16 1.5. Liquids, crystals and liquid crystals 16 1.5.1. The uniaxial nematic order parameter 19 1.5.2. The biaxial nematic ordering tensor 21 1.5.3. Continuum theory of nematic order 23 1.5.4. Smectic order 25 1.6. Three-dimensional imaging of liver tissue 26 1.7. Overview of the thesis 28 2. Characterizing cellular anisotropy 31 2.1. Classifying protein distributions on cell surfaces 31 2.1.1. Mode expansion to characterize distributions on the unit sphere 31 2.1.2. Vectorial and nematic classes of surface distributions 33 2.1.3. Cell polarity on non-spherical surfaces 34 2.2. Cell polarity in kidney and liver tissues 36 2.2.1. Kidney cells exhibit vectorial polarity 36 2.2.2. Hepatocytes exhibit nematic polarity 37 2.3. Local network anisotropy 40 2.4. Summary 41 3. Order parameters for tissue organization 43 3.1. Orientational order: quantifying biaxial phases 43 3.1.1. Biaxial nematic order parameters 45 3.1.2. Co-orientational order parameters 51 3.1.3. Invariants of moment tensors 52 3.1.4. Relation between these three schemes 53 3.1.5. Example: nematic coupling to an external field 55 3.2. A tissue-level reference field 59 3.3. Orientational order in inhomogeneous systems 62 3.4. Positional order: identifying signatures of smectic and columnar order 64 3.5. Summary 67 4. The liver lobule exhibits biaxial liquid-crystal order 69 4.1. Coarse-graining reveals nematic cell polarity patterns on the lobulelevel 69 4.2. Coarse-grained patterns match tissue-level reference field 73 4.3. Apical and basal nematic cell polarity are anti-correlated 74 4.4. Co-orientational order: nematic cell polarity is aligned with network anisotropy 76 4.5. RNAi knock-down perturbs orientational order in liver tissue 78 4.6. Signatures of smectic order in liver tissue 81 4.7. Summary 86 5. Effective models for cell and network polarity coordination 89 5.1. Discretization of a uniaxial nematic free energy 89 5.2. Discretization of a biaxial nematic free energy 91 5.3. Application to cell polarity organization in liver tissue 92 5.3.1. Spatial profile of orientational order in liver tissue 93 5.3.2. Orientational order from neighbor-interactions and boundary conditions 94 5.3.3. Orientational order from coupling to an external field 99 5.4. Biaxial interaction model 101 5.5. Summary 105 6. Network self-organization in a liver-inspired lattice model 107 6.1. Cubic lattice geometry motivated by liver tissue 107 6.2. Effective energy for local network segment interactions 110 6.3. Characterizing network structures in the cubic lattice geometry 113 6.4. Local interaction rules generate macroscopic network structures 115 6.5. Effect of mutual repulsion between unlike segment types on network structure 118 6.6. Summary 121 7. Discussion and Outlook 123 A. Appendix 127 A.1. Mean field theory fo the isotropic-uniaxial nematic transition 127 A.2. Distortions of the Mollweide projection 129 A.3. Shape parameters for basal membrane around hepatocytes 130 A.4. Randomized control for network segment anisotropies 130 A.5. The dihedral symmetry group D2h 131 A.6. Relation between orientational order parameters and elements of the super-tensor 134 A.7. Formal separation of molecular asymmetry and orientation 134 A.8. Order parameters under action of axes permutation 137 A.9. Minimal integrity basis for symmetric traceless tensors 139 A.10. Discretization of distortion free energy on cubic lattice 141 A.11. Metropolis Algorithm for uniaxial cell polarity coordination 142 A.12. States in the zero-noise limit of the nearest-neighbor interaction model 143 A.13. Metropolis Algorithm for network self-organization 144 A.14. Structural quantifications for varying values of mutual network segment repulsion 146 A.15. Structural quantifications for varying values of self-attraction of network segments 148 A.16. Structural quantifications for varying values of cell demand 150 Bibliography 152 Acknowledgements 17

    Robust Learning Architectures for Perceiving Object Semantics and Geometry

    Get PDF
    Parsing object semantics and geometry in a scene is one core task in visual understanding. This includes classification of object identity and category, localizing and segmenting an object from cluttered background, estimating object orientation and parsing 3D shape structures. With the emergence of deep convolutional architectures in recent years, substantial progress has been made towards learning scalable image representation for large-scale vision problems such as image classification. However, there still remains some fundamental challenges in learning robust object representation. First, creating object representations that are robust to changes in viewpoint while capturing local visual details continues to be a problem. In particular, recent convolutional architectures employ spatial pooling to achieve scale and shift invariances, but they are still sensitive to out-of-plane rotations. Second, deep Convolutional Neural Networks (CNNs) are purely driven by data and predominantly pose the scene interpretation problem as an end-to-end black-box mapping. However, decades of work on perceptual organization in both human and machine vision suggests that there are often intermediate representations that are intrinsic to an inference task, and which provide essential structure to improve generalization. In this dissertation, we present two methodologies to surmount the aforementioned two issues. We first introduce a multi-domain pooling framework which group local visual signals within generic feature spaces that are invariant to 3D object transformation, thereby reducing the sensitivity of output feature to spatial deformations. We formulate a probabilistic analysis of pooling which further suggests the multi-domain pooling principle. In addition, this principle guides us in designing convolutional architectures which achieve state-of-the-art performance on instance classification and semantic segmentation. We also present a multi-view fusion algorithm which efficiently computes multi-domain pooling feature on incrementally reconstructed scenes and aggregates semantic confidence to boost long-term performance for semantic segmentation. Next, we explore an approach for injecting prior domain structure into neural network training, which leads a CNN to recover a sequence of intermediate milestones towards the final goal. Our approach supervises hidden layers of a CNN with intermediate concepts that normally are not observed in practice. We formulate a probabilistic framework which formalizes these notions and predicts improved generalization via this deep supervision method.One advantage of this approach is that we are able to generalize the model trained from synthetic CAD renderings of cluttered scenes, where concept values can be extracted, to real image domain. We implement this deep supervision framework with a novel CNN architecture which is trained on synthetic image only and achieves the state-of-the-art performance of 2D/3D keypoint localization on real image benchmarks. Finally, the proposed deep supervision scheme also motivates an approach for accurately inferring six Degree-of-Freedom (6-DoF) pose for a large number of object classes from single or multiple views. To learn discriminative pose features, we integrate three new capabilities into a deep CNN: an inference scheme that combines both classification and pose regression based on an uniform tessellation of SE(3), fusion of a class prior into the training process via a tiled class map, and an additional regularization using deep supervision with an object mask. Further, an efficient multi-view framework is formulated to address single-view ambiguity. We show the proposed multi-view scheme consistently improves the performance of the single-view network. Our approach achieves the competitive or superior performance over the current state-of-the-art methods on three large-scale benchmarks

    Intelligent computing : the latest advances, challenges and future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    • 

    corecore