838 research outputs found

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    Effect of slot type identification on frame length optimization

    Get PDF
    In dense radio frequency identification (RFID) systems, reducing reading times is crucial. For tag anti-collision management, most RFID systems rely on frame slotted ALOHA (FSA). The most common method to reduce the reading time for large tag populations is optimization of the number of slots per frame. The slot duration in real RFID systems is determined by the slot type (idle, successful, or colliding). Furthermore, by detecting the strongest transponder, colliding slots can be transformed to successful slots, a phenomenon known as the capture effect. Additionally, RFID readers might be capable of identifying slot types using the physical layer which reduces the colliding slot time because at this moment the reader can immediately terminate the connection as there is no need to reply with invalid acknowledge and wait for the time-out. In this paper, we provide a novel approach for analytical estimation of the optimal frame length. Our approach yields a novel closed form equation for the frame length that takes into account durations of different slot types, the capture effect, and the probability of slot type identification. Experimental results for FM0 encoding show that our technique achieves a total reading time reduction between 5.5% and 11.3% over methods that do not take into account slot type identification. However, the reduction in reading time is maximally 9%, 6%, and 1% for Miller encoding scheme with M = 2, 4, and 8, respectively

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    An RFID Anti-Collision Algorithm Assisted by Multi-Packet Reception and Retransmission Diversity

    Get PDF
    RFID provides a way to connect the real world to the virtual world. An RFID tag can link a physical entity like a location, an object, a plant, an animal, or a human being to its avatar which belongs to a global information system. For instance, let's consider the case of an RFID tag attached to a tree. The tree is the physical entity. Its avatar can contain the type of the tree, the size of its trunk, and the list of actions a gardener took on it

    Tag Anti-collision Algorithm for RFID Systems with Minimum Overhead Information in the Identification Process

    Get PDF
    This paper describes a new tree based anti-collision algorithm for Radio Frequency Identification (RFID) systems. The proposed technique is based on fast parallel binary splitting (FPBS) technique. It follows a new identification path through the binary tree. The main advantage of the proposed protocol is the simple dialog between the reader and tags. It needs only one bit tag response followed by one bit reader reply (one-to-one bit dialog). The one bit reader response represents the collision report (0: collision; 1: no collision) of the tags' one bit message. The tag achieves self transmission control by dynamically updating its relative replying order due to the received collision report. The proposed algorithm minimizes the overhead transmitted bits per one tag identification. In the collision state, tags do modify their next replying order in the next bit level. Performed computer simulations have shown that the collision recovery scheme is very fast and simple even with the successive reading process. Moreover, the proposed algorithm outperforms most of the recent techniques in most cases
    • …
    corecore