4,444 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    SCDT: FC-NNC-structured Complex Decision Technique for Gene Analysis Using Fuzzy Cluster based Nearest Neighbor Classifier

    Get PDF
    In many diseases classification an accurate gene analysis is needed, for which selection of most informative genes is very important and it require a technique of decision in complex context of ambiguity. The traditional methods include for selecting most significant gene includes some of the statistical analysis namely 2-Sample-T-test (2STT), Entropy, Signal to Noise Ratio (SNR). This paper evaluates gene selection and classification on the basis of accurate gene selection using structured complex decision technique (SCDT) and classifies it using fuzzy cluster based nearest neighborclassifier (FC-NNC). The effectiveness of the proposed SCDT and FC-NNC is evaluated for leave one out cross validation metric(LOOCV) along with sensitivity, specificity, precision and F1-score with four different classifiers namely 1) Radial Basis Function (RBF), 2) Multi-layer perception(MLP), 3) Feed Forward(FF) and 4) Support vector machine(SVM) for three different datasets of DLBCL, Leukemia and Prostate tumor. The proposed SCDT &FC-NNC exhibits superior result for being considered more accurate decision mechanism

    Machine learning -- based diffractive imaging with subwavelength resolution

    Full text link
    Far-field characterization of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new imaging technique capable of fast and accurate characterization of two-dimensional structures with at least wavelength/25 resolution, based on a single far-field intensity measurement. Experimentally, we realized this technique resolving the smallest-available to us 180-nm-scale features with 532-nm laser light. A comprehensive analysis of machine learning algorithms was performed to gain insight into the learning process and to understand the flow of subwavelength information through the system. Image parameterization, suitable for diffractive configurations and highly tolerant to random noise was developed. The proposed technique can be applied to new characterization tools with high spatial resolution, fast data acquisition, and artificial intelligence, such as high-speed nanoscale metrology and quality control, and can be further developed to high-resolution spectroscop
    • …
    corecore