136 research outputs found

    FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale

    Get PDF
    AbstractDue to the sensitivity of the information required to detect network intrusions efficiently, collecting huge amounts of network transactions is inevitable and the volume and details of network transactions available in recent years have been high. The meta-heuristic anomaly based assessment is vital in an exploratory analysis of intrusion related network transaction data. In order to forecast and deliver predictions about intrusion possibility from the available details of the attributes involved in network transaction. In this regard, a meta-heuristic assessment model called the feature correlation analysis and association impact scale is explored to estimate the degree of intrusion scope threshold from the optimal features of network transaction data available for training. With the motivation gained from the model called “network intrusion detection by feature association impact scale” that was explored in our earlier work, a novel and improved meta-heuristic assessment strategy for intrusion prediction is derived. In this strategy, linear canonical correlation for feature optimization is used and feature association impact scale is explored from the selected optimal features. The experimental result indicates that the feature correlation has a significant impact towards minimizing the computational and time complexity of measuring the feature association impact scale

    Improved hybrid teaching learning based optimization-jaya and support vector machine for intrusion detection systems

    Get PDF
    Most of the currently existing intrusion detection systems (IDS) use machine learning algorithms to detect network intrusion. Machine learning algorithms have widely been adopted recently to enhance the performance of IDSs. While the effectiveness of some machine learning algorithms in detecting certain types of network intrusion has been ascertained, the situation remains that no single method currently exists that can achieve consistent results when employed for the detection of multiple attack types. Hence, the detection of network attacks on computer systems has remain a relevant field of research for some time. The support vector machine (SVM) is one of the most powerful machine learning algorithms with excellent learning performance characteristics. However, SVM suffers from many problems, such as high rates of false positive alerts, as well as low detection rates of rare but dangerous attacks that affects its performance; feature selection and parameters optimization are important operations needed to increase the performance of SVM. The aim of this work is to develop an improved optimization method for IDS that can be efficient and effective in subset feature selection and parameters optimization. To achieve this goal, an improved Teaching Learning-Based Optimization (ITLBO) algorithm was proposed in dealing with subset feature selection. Meanwhile, an improved parallel Jaya (IPJAYA) algorithm was proposed for searching the best parameters (C, Gama) values of SVM. Hence, a hybrid classifier called ITLBO-IPJAYA-SVM was developed in this work for the improvement of the efficiency of network intrusion on data sets that contain multiple types of attacks. The performance of the proposed approach was evaluated on NSL-KDD and CICIDS intrusion detection datasets and from the results, the proposed approaches exhibited excellent performance in the processing of large datasets. The results also showed that SVM optimization algorithm achieved accuracy values of 0.9823 for NSL-KDD dataset and 0.9817 for CICIDS dataset, which were higher than the accuracy of most of the existing paradigms for classifying network intrusion detection datasets. In conclusion, this work has presented an improved optimization algorithm that can improve the accuracy of IDSs in the detection of various types of network attack

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Evolutionary Algorithm-based Feature Selection for an Intrusion Detection System

    Get PDF
    Keeping computer reliability to confirm reliable, secure, and truthful correspondence of data between different enterprises is a major security issue. Ensuring information correspondence over the web or computer grids is always under threat of hackers or intruders. Many techniques have been utilized in intrusion detections, but all have flaws. In this paper, a new hybrid technique is proposed, which combines the Ensemble of Feature Selection (EFS) algorithm and Teaching Learning-Based Optimization (TLBO) techniques. In the proposed, EFS-TLBO method, the EFS strategy is applied to rank the features for choosing the ideal best subset of applicable information, and the TLBO is utilized to identify the most important features from the produced datasets. The TLBO algorithm uses the Extreme Learning Machine (ELM) to choose the most effective attributes and to enhance classification accuracy. The performance of the recommended technique is evaluated in a benchmark dataset. The experimental outcomes depict that the proposed model has high predictive accuracy, detection rate, false-positive rate, and requires less significant attributes than other techniques known from the literature

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Performance Evaluation of Network Anomaly Detection Systems

    Get PDF
    Nowadays, there is a huge and growing concern about security in information and communication technology (ICT) among the scientific community because any attack or anomaly in the network can greatly affect many domains such as national security, private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research area, and many different techniques and approaches for this purpose have emerged through the years. Attacks, problems, and internal failures when not detected early may badly harm an entire Network system. Thus, this thesis presents an autonomous profile-based anomaly detection system based on the statistical method Principal Component Analysis (PCADS-AD). This approach creates a network profile called Digital Signature of Network Segment using Flow Analysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through historical data analysis. That digital signature is used as a threshold for volume anomaly detection to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow attributes: Bits, Packets and Number of Flows to detect problems, and Source and Destination IP addresses and Ports, to provides the network administrator necessary information to solve them. Via evaluation techniques, addition of a different anomaly detection approach, and comparisons to other methods performed in this thesis using real network traffic data, results showed good traffic prediction by the DSNSF and encouraging false alarm generation and detection accuracy on the detection schema. The observed results seek to contribute to the advance of the state of the art in methods and strategies for anomaly detection that aim to surpass some challenges that emerge from the constant growth in complexity, speed and size of today’s large scale networks, also providing high-value results for a better detection in real time.Atualmente, existe uma enorme e crescente preocupação com segurança em tecnologia da informação e comunicação (TIC) entre a comunidade científica. Isto porque qualquer ataque ou anomalia na rede pode afetar a qualidade, interoperabilidade, disponibilidade, e integridade em muitos domínios, como segurança nacional, armazenamento de dados privados, bem-estar social, questões econômicas, e assim por diante. Portanto, a deteção de anomalias é uma ampla área de pesquisa, e muitas técnicas e abordagens diferentes para esse propósito surgiram ao longo dos anos. Ataques, problemas e falhas internas quando não detetados precocemente podem prejudicar gravemente todo um sistema de rede. Assim, esta Tese apresenta um sistema autônomo de deteção de anomalias baseado em perfil utilizando o método estatístico Análise de Componentes Principais (PCADS-AD). Essa abordagem cria um perfil de rede chamado Assinatura Digital do Segmento de Rede usando Análise de Fluxos (DSNSF) que denota o comportamento normal previsto de uma atividade de tráfego de rede por meio da análise de dados históricos. Essa assinatura digital é utilizada como um limiar para deteção de anomalia de volume e identificar disparidades na tendência de tráfego normal. O sistema proposto utiliza sete atributos de fluxo de tráfego: bits, pacotes e número de fluxos para detetar problemas, além de endereços IP e portas de origem e destino para fornecer ao administrador de rede as informações necessárias para resolvê-los. Por meio da utilização de métricas de avaliação, do acrescimento de uma abordagem de deteção distinta da proposta principal e comparações com outros métodos realizados nesta tese usando dados reais de tráfego de rede, os resultados mostraram boas previsões de tráfego pelo DSNSF e resultados encorajadores quanto a geração de alarmes falsos e precisão de deteção. Com os resultados observados nesta tese, este trabalho de doutoramento busca contribuir para o avanço do estado da arte em métodos e estratégias de deteção de anomalias, visando superar alguns desafios que emergem do constante crescimento em complexidade, velocidade e tamanho das redes de grande porte da atualidade, proporcionando também alta performance. Ainda, a baixa complexidade e agilidade do sistema proposto contribuem para que possa ser aplicado a deteção em tempo real

    Predictor Selection and Attack Classification using Random Forest for Intrusion Detection

    Get PDF
    365-368Decision making for intrusion detection is critical in a distributed environment such as cloud or grid computing due to its’ dynamic nature. Wrong or delayed decisions lead to astonishing problems. So that decision making phase is enhanced by means of selecting relevant features for prediction and trained to classify attacks. Initially the common valued features for both normal and attack behavior are removed. The random forest algorithm is used for analyzing the predictors’ importance for intrusion detection. Then random forest algorithm works with the reduced and selected predictors to classify the normal user and attack behavior. Finally the classifications are used to detect intruders. Experiments are conducted and proved that classifier performance can be improved in terms of accuracy, efficiency and detection rate using random forest

    An adaptive distributed Intrusion detection system architecture using multi agents

    Get PDF
    Intrusion detection systems are used for monitoring the network data, analyze them and find the intrusions if any. The major issues with these systems are the time taken for analysis, transfer of bulk data from one part of the network to another, high false positives and adaptability to the future threats. These issues are addressed here by devising a framework for intrusion detection. Here, various types of co-operating agents are distributed in the network for monitoring, analyzing, detecting and reporting. Analysis and detection agents are the mobile agents which are the primary detection modules for detecting intrusions. Their mobility eliminates the transfer of bulk data for processing. An algorithm named territory is proposed to avoid interference of one analysis agent with another one. A communication layout of the analysis and detection module with other modules is depicted. The inter-agent communication reduces the false positives significantly. It also facilitates the identification of distributed types of attacks. The co-ordinator agents log various events and summarize the activities in its network. It also communicates with co-ordinator agents of other networks. The system is highly scalable by increasing the number of various agents if needed. Centralized processing is avoided here to evade single point of failure. We created a prototype and the experiments done gave very promising results showing the effectiveness of the system
    corecore