5 research outputs found

    Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured SCCA approach

    Get PDF
    Brain imaging genetics becomes an important research topic since it can reveal complex associations between genetic factors and the structures or functions of the human brain. Sparse canonical correlation analysis (SCCA) is a popular bi-multivariate association identification method. To mine the complex genetic basis of brain imaging phenotypes, there arise many SCCA methods with a variety of norms for incorporating different structures of interest. They often use the group lasso penalty, the fused lasso or the graph/network guided fused lasso ones. However, the group lasso methods have limited capability because of the incomplete or unavailable prior knowledge in real applications. The fused lasso and graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. In this paper, we introduce two new penalties to improve the fused lasso and the graph/network guided lasso penalties in structured sparse learning. We impose both penalties to the SCCA model and propose an optimization algorithm to solve it. The proposed SCCA method has a strong upper bound of grouping effects for both positively and negatively highly correlated variables. We show that, on both synthetic and real neuroimaging genetics data, the proposed SCCA method performs better than or equally to the conventional methods using fused lasso or graph/network guided fused lasso. In particular, the proposed method identifies higher canonical correlation coefficients and captures clearer canonical weight patterns, demonstrating its promising capability in revealing biologically meaningful imaging genetic associations

    Associating Multi-modal Brain Imaging Phenotypes and Genetic Risk Factors via A Dirty Multi-task Learning Method

    Get PDF
    Brain imaging genetics becomes more and more important in brain science, which integrates genetic variations and brain structures or functions to study the genetic basis of brain disorders. The multi-modal imaging data collected by different technologies, measuring the same brain distinctly, might carry complementary information. Unfortunately, we do not know the extent to which the phenotypic variance is shared among multiple imaging modalities, which further might trace back to the complex genetic mechanism. In this paper, we propose a novel dirty multi-task sparse canonical correlation analysis (SCCA) to study imaging genetic problems with multi-modal brain imaging quantitative traits (QTs) involved. The proposed method takes advantages of the multi-task learning and parameter decomposition. It can not only identify the shared imaging QTs and genetic loci across multiple modalities, but also identify the modality-specific imaging QTs and genetic loci, exhibiting a flexible capability of identifying complex multi-SNP-multi-QT associations. Using the state-of-the-art multi-view SCCA and multi-task SCCA, the proposed method shows better or comparable canonical correlation coefficients and canonical weights on both synthetic and real neuroimaging genetic data. In addition, the identified modality-consistent biomarkers, as well as the modality-specific biomarkers, provide meaningful and interesting information, demonstrating the dirty multi-task SCCA could be a powerful alternative method in multi-modal brain imaging genetics

    A Novel SCCA Approach via Truncated â„“1-norm and Truncated Group Lasso for Brain Imaging Genetics

    No full text
    Motivation: Brain imaging genetics, which studies the linkage between genetic variations and structural or functional measures of the human brain, has become increasingly important in recent years. Discovering the bi-multivariate relationship between genetic markers such as single-nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is one major task in imaging genetics. Sparse Canonical Correlation Analysis (SCCA) has been a popular technique in this area for its powerful capability in identifying bi-multivariate relationships coupled with feature selection. The existing SCCA methods impose either the ℓ 1 -norm or its variants to induce sparsity. The ℓ 0 -norm penalty is a perfect sparsity-inducing tool which, however, is an NP-hard problem. Results: In this paper, we propose the truncated ℓ 1 -norm penalized SCCA to improve the performance and effectiveness of the ℓ 1 -norm based SCCA methods. Besides, we propose an efficient optimization algorithms to solve this novel SCCA problem. The proposed method is an adaptive shrinkage method via tuning τ . It can avoid the time intensive parameter tuning if given a reasonable small τ . Furthermore, we extend it to the truncated group-lasso (TGL), and propose TGL-SCCA model to improve the group-lasso-based SCCA methods. The experimental results, compared with four benchmark methods, show that our SCCA methods identify better or similar correlation coefficients, and better canonical loading profiles than the competing methods. This demonstrates the effectiveness and efficiency of our methods in discovering interesting imaging genetic associations. Availability: The Matlab code and sample data are freely available at http://www.iu.edu/∼shenlab/tools/tlpscca/
    corecore