448 research outputs found

    Constraint-consistent Runge-Kutta methods for one-dimensional incompressible multiphase flow

    Get PDF
    New time integration methods are proposed for simulating incompressible multiphase flow in pipelines described by the one-dimensional two-fluid model. The methodology is based on 'half-explicit' Runge-Kutta methods, being explicit for the mass and momentum equations and implicit for the volume constraint. These half-explicit methods are constraint-consistent, i.e., they satisfy the hidden constraints of the two-fluid model, namely the volumetric flow (incompressibility) constraint and the Poisson equation for the pressure. A novel analysis shows that these hidden constraints are present in the continuous, semi-discrete, and fully discrete equations. Next to constraint-consistency, the new methods are conservative: the original mass and momentum equations are solved, and the proper shock conditions are satisfied; efficient: the implicit constraint is rewritten into a pressure Poisson equation, and the time step for the explicit part is restricted by a CFL condition based on the convective wave speeds; and accurate: achieving high order temporal accuracy for all solution components (masses, velocities, and pressure). High-order accuracy is obtained by constructing a new third order Runge-Kutta method that satisfies the additional order conditions arising from the presence of the constraint in combination with time-dependent boundary conditions. Two test cases (Kelvin-Helmholtz instabilities in a pipeline and liquid sloshing in a cylindrical tank) show that for time-independent boundary conditions the half-explicit formulation with a classic fourth-order Runge-Kutta method accurately integrates the two-fluid model equations in time while preserving all constraints. A third test case (ramp-up of gas production in a multiphase pipeline) shows that our new third order method is preferred for cases featuring time-dependent boundary conditions

    A Volume of Fluid (VoF) based all-mach HLLC Solver for Multi-Phase Compressible Flow with Surface-Tension

    Get PDF
    This work presents an all-Mach method for two-phase inviscid flow in the presence of surface tension. A modified version of the Hartens, Lax, Leer and Contact (HLLC) approximate Riemann solver based on Garrick et al. [1] is developed and combined with the popular Volume of Fluid (VoF) method: Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM). This novel combination yields a scheme with both HLLC shock capturing as well as accurate liquid-gas interface tracking characteristics. To ensure compatibility with VoF, the Monotone Upstream-centred Scheme for Conservation Laws (MUSCL) [2] is applied to non-conservative (primitive) variables, which yields both robustness and accuracy. Liquid-gas interface curvature is computed via both height functions [3, 4] and the convolution method [5]. This is in the interest of applicability to both cartesian and arbitrary meshes. The author emphasizes the use of VoF in the interest of surface tension modelling accuracy. The method is validated using a range of test-cases available in literature. The results show flow features that are in agreement with experimental and benchmark data. In particular, the use of the HLLC-VoF combination leads to a sharp volume fraction and energy field with improved accuracy (up to secondorder)

    Modified HLLC-VOF solver for incompressible two-phase fluid flows

    Full text link
    A modified HLLC-type contact preserving Riemann solver for incompressible two-phase flows using the artificial compressibility formulation is presented. Here, the density is omitted from the pressure evolution equation. Also, while calculating the eigenvalues and eigenvectors, the variations of the volume fraction is taken into account. Hence, the equations for the intermediate states and the intermediate wave speed are different from the previous HLLC-VOF formulation [Bhat S P and Mandal J C, J. Comput. Phys. 379 (2019), pp. 173-191]. Additionally, an interface compression algorithm is used in tandem to ensure sharp interfaces. The modified Riemann solver is found to be robust compared to the previous HLLC-VOF solver, and the results produced are superior compared to non-contact preserving solver. Several test problems in two- and three-dimensions are solved to evaluate the efficacy of the solver on structured and unstructured meshes

    Validation of a New Parallel All-Speed CFD Code in a Rule-Based Framework for Multidisciplinary Applications

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76686/1/AIAA-2006-3063-966.pd

    Numerical simulation of two and three-dimensional viscous free surface flows in partially-filled containers using a surface capturing approach

    Get PDF
    A new surface capturing method is developed for numerically simulating viscous free surface flows in partially-filled containers. The method is based on the idea that the flow of two immiscible fluids (specifically, a liquid and a gas) within a closed container is governed by the equations of motion for a laminar, incompressible, viscous, nonhomogeneous (variable density) fluid. By computing the flowfields in both the liquid and gas regions in a consistent manner, the free surface can be captured as a discontinuity in the density field, thereby eliminating the need for special free surface tracking procedures;The numerical algorithm is developed using a conservative, implicit, finite volume discretization of the equations of motion. The algorithm incorporates the artificial compressibility method in conjunction with a dual time stepping strategy to maintain a divergence-free velocity field. A slope-limited, high order MUSCL scheme is adopted for approximating the inviscid flux terms, while the viscous fluxes are centrally differenced. Two different methods are considered for solving the resulting block-banded system of equations;The capabilities of the surface capturing method are demonstrated by calculating solutions to several challenging two and three-dimensional problems. The first test case, the two-dimensional broken dam problem, is considered in detail. Results are presented for several grid sizes, upwind schemes, and limiters, and are compared to experimental data from the literature. The solutions employing high order upwind interpolants and a compressive minmod limiter on the density are found to yield the best results. The two-dimensional, viscous Rayleigh-Taylor instability is examined next. Solutions for a density ratio of two are computed for various Reynolds numbers. Computed perturbation growth rates are shown to be in good agreement with theoretical predictions. Results for the three-dimensional broken dam problem are then presented. The computed free surface motions are found to be quite similar to the two-dimensional case. Finally, two cases involving axisymmetric spin-up in a spherical container are studied. The computed free surface shapes are found to exhibit the characteristic parabolic profiles as steady state conditions are approached
    • …
    corecore