1,267 research outputs found

    A survey of recent advances in fractional order control for time delay systems

    Get PDF
    Several papers reviewing fractional order calculus in control applications have been published recently. These papers focus on general tuning procedures, especially for the fractional order proportional integral derivative controller. However, not all these tuning procedures are applicable to all kinds of processes, such as the delicate time delay systems. This motivates the need for synthesizing fractional order control applications, problems, and advances completely dedicated to time delay processes. The purpose of this paper is to provide a state of the art that can be easily used as a basis to familiarize oneself with fractional order tuning strategies targeted for time delayed processes. Solely, the most recent advances, dating from the last decade, are included in this review

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System

    Get PDF
    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method

    New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder-Mead algorithm

    Full text link
    [EN] In this paper, an optimal gain tuning method for PID controllers is proposed using a novel combination of a simplified Ant Colony Optimization algorithm and Nelder¿Mead method (ACO-NM) including a new procedure to constrain NM. To address Proportional-Integral-Derivative (PID) controller tuning for the Automatic Voltage Regulator (AVR) system, this paper presents a meta-analysis of the literature on PID parameter sets solving the AVR problem. The investigation confirms that the proposed ACO-NM obtains better or equivalent PID solutions and exhibits higher computational efficiency than previously published methods. The proposed ACO-NM application is extended to realistic conditions by considering robustness to AVR process parameters, control signal saturation and noisy measurements as well as tuning a two-degree-of-freedom PID controller (2DOF-PID). For this type of PID, a new objective function is also proposed to manage control signal constraints. Finally, real time control experiments confirm the performance of the proposed 2DOF-PIDs in quasi-real conditions. Furthermore, the efficiency of the algorithm is confirmed by comparing its results to other optimization algorithms and NM combinations using benchmark functions.This work was supported by the Vanier Canada Graduate Scholarship, the Michael Smith Foreign Study Supplements Program from the Natural Sciences and Engineering Research Council of Canada and by the Ministerio de Economia y Competitividad (Spain), project DPI2015-71443-R. It was also supported by the Bourse Mobilite Etudiante from Ministere de l'Education du Quebec, the CEMF Claudette MacKay-Lassonde Graduate Engineering Ambassador Award and the SWAAC Bourseau merite pour etudiantes de cycles superieurs.Blondin, MJ.; Sanchís Saez, J.; Sicard, P.; Herrero Durá, JM. (2018). New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder-Mead algorithm. Applied Soft Computing. 62:216-229. https://doi.org/10.1016/j.asoc.2017.10.007S2162296

    Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism

    Get PDF
    Robot manipulator has become an exciting topic for many researchers during several decades. They have investigated the advanced algorithms such as sliding mode control, neural network, or genetic scheme to implement these developments. However, they lacked the integration of these algorithms to explore many potential expansions. Simultaneously, the complicated system requires a lot of computational costs, which is not always supported. Therefore, this paper presents a novel design of switching mechanisms to control the robot manipulator. This investigation is expected to achieve superior performance by flexibly adjusting various strategies for better selection. The Proportional-Integral-Derivative (PID) scheme is well-known, easy to implement, and ensures rapid computation while it might not have much control effect. The advanced interval type-2 fuzzy sliding mode control properly deals with nonlinear factors and disturbances. Consequently, the PID scheme is switched when the tracking error is less than the threshold or is far from the target. Otherwise, the interval type-2 fuzzy sliding mode control scheme is activated to cope with unknown factors. The main contributions of this paper are (i) the recommendation of a suitable switching mechanism to drive the robot manipulator, (ii) the successful integration of the interval type-2 fuzzy sliding mode control to track the desired trajectory, and (iii) the launching of several tests to validate the proposed controller with robot model. From these achievements, it would be stated that the proposed approach is effective in tracking performance, robust in disturbance-rejection, and feasible in practical implementation

    A shifting pole placement approach for the design of performance-varying multivariable PID controllers via BMIs

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper, the design of a performance-varying multivariable Proportional-Integral-Derivative (PID) controllers is presented. The main objective is to provide a framework for changing online the closed-loop behavior of the controlled system using the shifting pole placement approach. In order to carry out this target, the PID design problem is transformed into a static output feedback design problem which is analyzed through the linear parameter-varying (LPV) paradigm. An academic example is used to demonstrate the effectiveness of the proposed approach.Peer ReviewedPostprint (author's final draft

    Studies in performance monitoring of simple feedback control loops

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Applications of Mathematical Models in Engineering

    Get PDF
    The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools

    Passive and active assistive writing devices in suppressing hand tremor

    Get PDF
    Patients with hand tremor disease frequently experience difficulties in performing their daily tasks, especially in handwriting activities. In order to prevent the ingestion of drugs and intervention of surgeries, a non-invasive solution was presented to improve their writing capabilities. In this study, there were two novel inventions of the hand-held device named as TREMORX and Active Assistive Writing Device (AAWD) with the approaches of passive and active elements respectively. For validation, the patient with tremor was assisted in using a normal pen and TREMORX to perform a handwriting task at the sitting and standing postures. For AAWD, the active suppressing element was the servo motor to control the hand tremor act on the writing tool tip and an accelerometer will measure the necessary parameters values for feedback control signal. The classic Proportional (P) controller and Proportional-Integral- Derivative (PID) were presented. The P controller was tuned with a meta-heuristic method by adjusting the parameters into several values to examine the response and robustness of the controller in suppressing the tremor. The evaluation was based on decreasing the coherence magnitude on the frequency response analysis. To optimise the performances, two types of Evolutionary Algorithms (EA) were employed which were Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO). The optimisation techniques were integrated into the PID controller system to generate the optimum performances in controlling the tremor. For the simulation study, the parametric model representing the actual system of the AAWD was presented. The main objectives of this analysis were to determine the optimum value of PID parameters based on EA optimisation techniques. The determined parameters for both optimisations were then injected into the experimental environment to test and evaluate the performance of the controllers. The findings of the study exhibited that the PID controller for both EA optimisation provided excellent performances in suppressing the tremor signal act on the AAWD in comparison to the classic pure P controller. Based on the fitness evaluation, the GA optimisation significantly enhanced the PID controller performance compared to PSO optimisation. The handwriting performance using both TRREMORX and AAWD was recorded and from a visual justification, it showed that the quality of legibility was improved as compared with using normal handwriting devices. These outcomes provided an important contribution towards achieving novel methods in suppressing hand tremor by means of the invention of the handheld writing devices incorporated with intelligent control techniques
    corecore