764 research outputs found

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version

    Novelty detection based condition monitoring scheme applied to electromechanical systems

    Get PDF
    This study is focused on the current challenges dealing with electromechanical system monitoring applied in industrial frameworks, that is, the presence of unknown events and the limitation to the nominal healthy condition as starting knowledge. Thus, an industrial machinery condition monitoring methodology based on novelty detection and classification is proposed in this study. The methodology is divided in three main stages. First, a dedicated feature calculation and reduction over each available physical magnitude. Second, an ensemble structure of novelty detection models based on one-class support vector machines to identify not previously considered events. Third, a diagnosis model supported by a feature fusion scheme in order to reach high fault classification capabilities. The effectiveness of the fault detection and identification methodology has been compared with classical single model approach, and verified by experimental results obtained from an electromechanical machine. © 2018 IEEE.Postprint (author's final draft

    Industrial data-driven monitoring based on incremental learning applied to the detection of novel faults

    Get PDF
    The detection of uncharacterized events during electromechanical systems operation represents one of the most critical data challenges dealing with condition-based monitoring under the Industry 4.0 framework. Thus, the detection of novelty conditions and the learning of new patterns are considered as mandatory competencies in modern industrial applications. In this regard, this article proposes a novel multifault detection and identification scheme, based on machine learning, information data-fusion, novelty-detection, and incremental learning. First, statistical time-domain features estimated from multiple physical magnitudes acquired from the electrical motor under inspection are fused under a feature-fusion level scheme. Second, a self-organizing map structure is proposed to construct a data-based model of the available conditions of operation. Third, the incremental learning of the condition-based monitoring scheme is performed adding self-organizing structures and optimizing their projections through a linear discriminant analysis. The performance of the proposed scheme is validated under a complete set of experimental scenarios from two different cases of study, and the results compared with a classical approach.Peer ReviewedPostprint (author's final draft

    Neural network fault diagnosis of a trolling motor based on feature reduction techniques for an unmanned surface vehicle

    Get PDF
    This article presents a novel approach to the diagnosis of unbalanced faults in a trolling motor under stationary operating conditions. The trolling motor being typically of that used as the propulsion system for an unmanned surface vehicle, the diagnosis approach is based on the use of discrete wavelet transforms as a feature extraction tool and a time-delayed neural network for fault classification. The time-delayed neural network classifies between healthy and faulty conditions of the trolling motor by analysing the stator current and vibration. To overcome feature redundancy, which affects diagnosis accuracy, several feature reduction methods have been tested, and the orthogonal fuzzy neighbourhood discriminant analysis approach is found to be the most effective method. Four faulty conditions were analysed under laboratory conditions, where one of the blades causing damage to the trolling motor is cut into 10%, 25%, half and then into full to simulate the effects of propeller blades being damaged partly or fully. The results obtained from the real-time simulation demonstrate the effectiveness and reliability of the proposed methodology in classifying the different faults faster and accurately

    Multiple-fault detection and identification scheme based on hierarchical self-organizing maps applied to an electric machine

    Get PDF
    Strategies of condition monitoring applied to electric motors play an important role in the competitiveness of multiple industrial sectors. However, the risk of faults coexistence in an electric motor and the overlapping of their effects in the considered physical magnitudes represent, currently, a critical limitation to provide reliable diagnosis outcomes. In this regard, additional investigation efforts are required towards high-dimensional data fusion schemes, particularly over the features calculation and features reduction, which represent two decisive stages in such data-driven approaches. In this study, a novel multiple-fault detection and identification methodology supported by a feature-level fusion strategy and a Self-Organizing Maps (SOM) hierarchical structure is proposed. The condition diagnosis as well as the corresponding estimated probability are obtained. Moreover, the proposed method allows the visualization of the results while preserving the underlying physical phenomenon of the system under monitoring. The proposed scheme is performed sequentially; first, a set of statistical-time based features is estimated from different physical magnitudes. Second, a hybrid feature reduction method is proposed, composed by an initial soft feature reduction, based on sequential floating forward selection to remove the less informative features, and followed by a hierarchical SOM structure which reveals directly the diagnosis and probability assessment. The effectiveness of the proposed detection and identification scheme is validated with a complete set of experimental data including healthy and five faulty conditions. The accuracy’s results are compared with classical condition monitoring approaches in order to validate the competency of the proposed method.Peer ReviewedPostprint (author's final draft

    Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines

    Get PDF
    Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.Peer ReviewedPostprint (published version

    DATA-DRIVEN TECHNIQUES FOR DIAGNOSING BEARING DEFECTS IN INDUCTION MOTORS

    Get PDF
    Induction motors are frequently used in many automated systems as a major driving force, and thus, their reliable performances are of predominant concerns. Induction motors are subject to different types of faults and an early detection of faults can reduce maintenance costs and prevent unscheduled downtime. Motor faults are generally related to three components: the stator, the rotor and/or the bearings. This study focuses on the fault diagnosis of the bearings, which is the major reason for failures in induction motors. Data-driven fault diagnosis systems usually include a classification model which is supported by an efficient pre-processing unit. Various classifiers, which aim to diagnose multiple bearing defects (i.e., ball, inner race and outer race defects of different diameters), require well-processed data. The pre-processing tasks plays a vital role for extracting informative features from the vibration signal, reducing the dimensionality of the features and selecting the best features from the feature pool. Once the vibration signal is perfectly analyzed and a proper feature subset is created, then fault classifiers can be trained. However, classification task can be difficult if the training dataset is not balanced. Induction motors usually operate under healthy condition (than faulty situation), thus the monitored vibration samples relate to the normal state of the system expected to be more than the samples of the faulty state. Here, in this work, this challenge is also considered so that the classification model needs to deal with class imbalance problem
    • …
    corecore