109 research outputs found

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF

    NASA Tech Briefs, August 2011

    Get PDF
    Topics covered include: Miniature, Variable-Speed Control Moment Gyroscope; NBL Pistol Grip Tool for Underwater Training of Astronauts; HEXPANDO Expanding Head for Fastener-Retention Hexagonal Wrench; Diagonal-Axes Stage for Pointing an Optical Communications Transceiver; Improvements in Speed and Functionality of a 670-GHz Imaging Radar; IONAC-Lite; Large Ka-Band Slot Array for Digital Beam-Forming Applications; Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation; Coupling Between Waveguide-Fed Slot Arrays; PCB-Based Break-Out Box; Multiple-Beam Detection of Fast Transient Radio Sources; Router Agent Technology for Policy-Based Network Management; Remote Asynchronous Message Service Gateway; Automatic Tie Pointer for In-Situ Pointing Correction; Jitter Correction; MSLICE Sequencing; EOS MLS Level 2 Data Processing Software Version 3; DspaceOgre 3D Graphics Visualization Tool; Metallization for Yb14MnSb11-Based Thermoelectric Materials; Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds; Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing; Self-Cleaning Coatings and Materials for Decontaminating Field-Deployable Land and Water-Based Optical Systems; Separation of Single-Walled Carbon Nanotubes with DEP-FFF; Li Anode Technology for Improved Performance; Post-Fragmentation Whole Genome Amplification-Based Method; Microwave Tissue Soldering for Immediate Wound Closure; Principles, Techniques, and Applications of Tissue Microfluidics; Robotic Scaffolds for Tissue Engineering and Organ Growth; Stress-Driven Selection of Novel Phenotypes; Method for Accurately Calibrating a Spectrometer Using Broadband Light; Catalytic Microtube Rocket Igniter; Stage Cylindrical Immersive Display; Vacuum Camera Cooler; Atomic Oxygen Fluence Monitor; Thermal Management Tools for Propulsion System Trade Studies and Analysis; Introduction to Physical Intelligence; Technique for Solving Electrically Small to Large Structures for Broadband Applications; Accelerated Adaptive MGS Phase Retrieval; Large Eddy Simulation Study for Fluid Disintegration and Mixing; Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay; Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code; Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface; Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields; Flight Simulation of ARES in the Mars Environment; Low-Outgassing Photogrammetry Targets for Use in Outer Space; Planning the FUSE Mission Using the SOVA Algorithm; Monitoring Spacecraft Telemetry Via Optical or RF Link; and Robust Thermal Control of Propulsion Lines for Space Missions

    Advances on the investigation of landslides by space-borne synthetic aperture radar interferometry

    Get PDF
    Landslides are destructive geohazards to people and infrastructure, resulting in hundreds of deaths and billions of dollars of damage every year. Therefore, mapping the rate of deformation of such geohazards and understanding their mechanics is of paramount importance to mitigate the resulting impacts and properly manage the associated risks. In this paper, the main outcomes relevant to the joint European Space Agency (ESA) and the Chinese Ministry of Science and Technology (MOST) Dragon-5 initiative cooperation project ID 59,339 “Earth observation for seismic hazard assessment and landslide early warning system” are reported. The primary goals of the project are to further develop advanced SAR/InSAR and optical techniques to investigate seismic hazards and risks, detect potential landslides in wide regions, and demonstrate EO-based landslide early warning system over selected landslides. This work only focuses on the landslide hazard content of the project, and thus, in order to achieve these objectives, the following tasks were developed up to now: a) a procedure for phase unwrapping errors and tropospheric delay correction; b) an improvement of a cross-platform SAR offset tracking method for the retrieval of long-term ground displacements; c) the application of polarimetric SAR interferometry (PolInSAR) to increase the number and quality of monitoring points in landslide-prone areas; d) the semiautomatic mapping and preliminary classification of active displacement areas on wide regions; e) the modeling and identification of landslides in order to identify triggering factors or predict future displacements; and f) the application of an InSAR-based landslide early warning system on a selected site. The achieved results, which mainly focus on specific sensitive regions, provide essential assets for planning present and future scientific activities devoted to identifying, mapping, characterizing, monitoring and predicting landslides, as well as for the implementation of early warning systems.This work was supported by the ESA-MOST China DRAGON-5 project with ref. 59339, by the Spanish Ministry of Science and Innovation, the State Agency of Research (AEI), and the European Funds for Regional Development under grant [grant number PID2020-117303GB-C22], by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital in the framework of the project CIAICO/2021/335, by the Natural Science Foundation of China [grant numbers 41874005 and 41929001], the Fundamental Research Funds for the Central University [grant numbers 300102269712 and 300102269303], and China Geological Survey Project [grant numbers DD20190637 and DD20190647]. Xiaojie Liu and Liuru Hu have been funded by Chinese Scholarship Council Grants Ref. [grant number 202006560031] and [grant number 202004180062], respectively

    Motion Planning in Artificial and Natural Vector Fields

    Get PDF
    This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging environments that may contain obstacles or prohibited regions (e.g., no-fly zones). The method is extended to generate a vector field-based policy that optimally guides the vehicle to a given goal. Numerical comparisons with state-of-the-art control solvers demonstrate the method\u27s simplicity and accuracy. In this dissertation, the proposed sampling-based approach is used to compute trajectories for an autonomous semi-buoyant solar-powered airship in the challenging Venusian atmosphere, which is characterized by super-rotation winds. A cost function that incorporates the energetic balance of the airship is proposed to find energy-efficient trajectories. This cost function combines the main forces acting on the vehicle: weight, buoyancy, aerodynamic lift and drag, and thrust. The FlowFMT* method is also extended to consider the possibility of battery depletion due to thrust or battery charging due to solar energy and tested in this Venus atmosphere scenario. Simulations showcase how the airship selects high-altitude paths to minimize energy consumption and maximize battery recharge. They also show the airship sinking down and drifting with the wind at the altitudes where it is fully buoyant. For terrestrial applications, this dissertation finally introduces the Sensor-Space Lattice (SSLAT) motion planner, a real-time obstacle avoidance algorithm for autonomous vehicles and mobile robots equipped with planar range finders. This planner uses a lattice to tessellate the area covered by the sensor and to rapidly compute collision-free paths in the robot surroundings by optimizing a cost function. The cost function guides the vehicle to follow an artificial vector field that encodes the desired vehicle path. This planner is evaluated in challenging, cluttered static environments, such as warehouses and forests, and in the presence of moving obstacles, both in simulations and real experiments. Our results show that our algorithm performs collision checking and path planning faster than baseline methods. Since the method can have sequential or parallel implementations, we also compare the two versions of SSLAT and show that the run-time for its parallel implementation, which is independent of the number and shape of the obstacles found in the environment, provides a significant speedup due to the independent collision checks

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue

    Applications of Photogrammetry for Environmental Research

    Get PDF
    ISPRS International Journal of Geo-Information: special issue entitled "Applications of Photogrammetry for Environmental Research

    Ultralight Radar Sensor for Autonomous Operations by Mini- and Micro-UAS

    Get PDF
    In recent years the boost in operations by mini- and micro-UAS (Unmanned Aircraft Systems, also known as Remotely Piloted Aircraft Systems - RPAS - or simply drones) and the successful miniaturization of electronic components were experienced. Radar sensors demonstrated to have favorable features for these operations. However, despite their ability to provide meaningful information for navigation, sense-and-avoid, and imaging tasks, currently very few radar sensors are exploited onboard or developed for autonomous operations with mini- and micro-UAS. Exploration of indoor complex, dangerous, and not easily accessible environments represents a possible application for mini-UAS based on radar technology. In this scenario, the objective of the thesis is to develop design strategies and processing approaches for a novel ultralight radar sensor able to provide the miniaturized platform with Simultaneous Localization and Mapping (SLAM) capabilities, mainly but not exclusively indoors. Millimeter-wave Interferometric Synthetic Aperture Radar (mmw InSAR) technology has been identified as a key asset. At the same time, testing of commercial lightweight radar is carried out to assess potentialities towards autonomous navigation, sense-and-avoid, and imaging. The two main research lines can be outlined as follows: - Long-term scenario: Development of very compact and ultralight Synthetic Aperture Radar able to provide mini- or micro-UAS with very accurate 3D awareness in indoor or GPS-denied complex and harsh environments. - Short-term scenario: Assessment of true potentialities of current commercial radar sensors in a UAS-oriented scenario. Within the framework of long-term scenario, after a review of state-of-art SAR sensors, Frequency-Modulated Continuous Wave (FMCW) SAR technology has been selected as preferred candidate. Design procedure tailored to this technology and software simulator for operations have been developed in MATLAB environment. Software simulator accounts for the analysis of ambiguous areas in a three-dimensional environment, different SAR focusing algorithms, and a Ray-Tracing algorithm specifically designed for indoor operations. The simulations provided relevant information on actual feasibility of the sensor, as well as mission design characteristics. Additionally, field tests have been carried out at Fraunhofer Institute FHR with a mmw SAR. Processing approaches developed from simulations proved to be effective when dealing with field tests. A very lightweight FMCW radar sensor manifactured by IMST GmbH has been tested for short-term scenario operations. The codes for data acquisition were developed in Python language both for Windows-based and GNU/Linux-based operative systems. The radar provided information on range and angle of targets in the scene, thus being interesting for radar-aided UAS navigation. Multiple-target tracking and radar odometry algorithms have been developed and tested on actual field data. Radar-only odometry provided to be effective under specific circumstances

    Wireless sensor networks for landslide monitoring: application and optimization by visibility analysis on 3D point clouds

    Get PDF
    Occurring in many geographical, geological and climatic environments, landslides represent a major geological hazard. In landslide prone areas, monitoring devices associated with Early Warning Systems are a cost-effective means to reduce the risk with a low environmental and economic impact, and in some cases, they can be the only solution. In this framework, particular interest has been reserved for Wireless Sensor Networks (WSNs), defined as networks of usually low-size and low-cost devices denoted as nodes, which are integrated with sensors that can gather information through wireless links. In this thesis, data from a new prototypical ground instability monitoring instrument called Wi-GIM (Wireless sensor network for Ground Instability Monitoring) have been analysed. The system consists in a WSN made by nodes able to measure their mutual inter-distances by calculating the time of flight of an Ultra-Wide Band impulse. Therefore, no sensors are implemented in the network, as the same signals used for transmission are also used for ranging. The system has been tested in a controlled outdoor environment and applied for the monitoring of the displacements of an actual landslide, the Roncovetro mudflow in Central Italy, where a parallel monitoring with a Robotic Total Station (RTS) allowed to validate the system. The outputs are displacement time series showing the distance of each couple of nodes belonging to the same cluster. Data retrieved from the tests revealed a precision of 2–5 cm and that measurements are influenced by the temperature. Since the correlation with this parameter has proved to be linear, a simple correction is sufficient to improve the precision and remove the effect of temperature. The campaign also revealed that measurements were not affected by rain or snow, and that the system can efficiently communicate up to 150 m with a 360° angle of view without affecting precision. Other key features of the implemented system are easy and quick installation, flexibility, low cost, real-time monitoring and acquisition frequency changeability. The comparison between Wi-GIM and RTS measurements pointed out the presence of an offset (in an order that vary from centimetric to decametric) constant for each single couple, due mainly to the presence of obstacles that can obstruct the Line Of Sight (LOS). The presence of vegetation is the main cause of the non-LOS condition between two nodes, which translates in a longer path of the signals and therefore to a less accurate distance measurements. To go further inside this issue, several tests have been carried out proving the strong influence of the vegetation over both data quantity and quality. To improve them, a MATLAB tool (R2018a, MAthWorks, Natick, MA, USA) called WiSIO (Wireless Sensor network Installation Optimizer) has been developed. The algorithm finds the best devices deployment following three criteria: (i) inter-visibility by means of a modified version of the Hidden Point Removal operator; (ii) equal distribution; (iii) positioning in preselected priority areas. With respect to the existing viewshed analysis, the main novelty is that it works directly with 3D point clouds, without rendering them or performing any surface. This lead to skip the process of generating surface models avoiding errors and approximations, that is essential when dealing with vegetation. A second installation of the Wi-GIM system has been therefore carried out considering the deployment suggested by WiSIO. The comparison of data acquired by the system positioned with and without the help of the proposed algorithm allowed to better comprehend the effectiveness of the tool. The presented results are very promising, showing how a simple elaboration can be essential to have more and more reliable data, improving the Wi-GIM system performances, making it even more usable in very complex environments and increasing its flexibility. The main left limitation of the Wi-GIM system is currently the precision. Such issue is connected to the aim of using only low-cost components, and it can be prospectively overcome if the system undergoes an industrialization process. Furthermore, since the system architecture is re-adaptable, it is prone to enhancements as soon as the technology advances and new low cost hardware enters the market
    corecore