2,245 research outputs found

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    An Investigation into the Implementation and Performance of Spectrally Shaped Orthogonal Frequency Division Multiplex

    Get PDF
    Orthogonal Frequency Division Multiplex (OFDM) is a flexible, robust multi-carrier modulation scheme. The orthogonal spectral shaping and spacing of OFDM sub-carriers ensure that their spectra can be over-lapped without leading to undesirable inter-carrier interference. Conventional OFDM systems have non-band limited Sinc(x) shaped subcarrier spectra. An alternative form of OFDM, referred to hereafter as Spectrally Shaped OFDM, employs band limited Nyquist shaped sub-carrier spectra. The research described in this thesis investigates the strengths and weaknesses of Spectrally Shaped OFDM as a potential modulation scheme for future mobile radio applications. From this research a novel Digital Signal Processing architecture for modulating and demodulating Spectrally Shaped OFDM sub-carriers has been derived which exploits the combination of a complex Discrete Fourier Transform (DFT) and PolyPhase Network (PPN) filter. This architecture is shown to significantly reduce the minimum number of computations required per symbol compared to previous designs. Using a custom coded computer simulation, the effects of varying the key parameters of the novel architecture's PolyPhase Filter (PPN) filter an the overall system complexity, spectral performance and system signal-to-distortion have been extensively studied. From these studies it is shown that compared to similar conventional OFDM systems, Spectrally Shaped OFDM systems possess superior out-of-band spectral qualities but significantly worse Peak-to-Average-Power-Ratio (PAPR) envelope performance. lt is also shown that the absolute value of the end PPN filter coefficients (dependent on the roll-off factor of the sub-carrier spectral shaping) dictate the system signal-to-distortion ratio when no time-domain windowing of the PPN filter coefficients is applied. Finally the effects of a both time and frequency selective fast fading channels on the modulation scheme's uncoded Bit Error Rate (BER) versus Signal-to-Noise (SNR) performance are simulated. The results obtained indicate that Spectrally Shaped OFDM is more robust (lower BER) to frequency-selective fading than time-selective fading

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd

    GNSS Integrity Monitoring assisted by Signal Processing techniques in Harsh Environments

    Get PDF
    The Global Navigation Satellite Systems (GNSS) applications are growing and more pervasive in the modern society. The presence of multi-constellation GNSS receivers able to use signals coming from different systems like the american Global Positioning System (GPS), the european Galileo, the Chinese Beidou and the russian GLONASS, permits to have more accuracy in position solution. All the receivers provide always more reliable solution but it is important to monitor the possible presence of problems in the position computation. These problems could be caused by the presence of impairments given by unintentional sources like multipath generated by the environment or intentional sources like spoofing attacks. In this thesis we focus on design algorithms at signal processing level used to assist Integrity operations in terms of Fault Detection and Exclusion (FDE). These are standalone algorithms all implemented in a software receiver without using external information. The first step was the creation of a detector for correlation distortion due to the multipath with his limitations. Once the detection is performed a quality index for the signal is computed and a decision about the exclusion of a specific Satellite Vehicle (SV) is taken. The exclusion could be not feasible so an alternative approach could be the inflation of the variance of the error models used in the position computation. The quality signal can be even used for spoofinng applications and a novel mitigation technique is developed and presented. In addition, the mitigation of the multipath can be reached at pseudoranges level by using new method to compute the position solution. The main contributions of this thesis are: the development of a multipath, or more in general, impairments detector at signal processing level; the creation of an index to measure the quality of a signal based on the detector’s output; the description of a novel signal processing method for detection and mitigation of spoofing effects, based on the use of linear regression algorithms; An alternative method to compute the Position Velocity and Time (PVT) solution by using different well known algorithms in order to mitigate the effects of the multipath on the position domain

    Can a remote sensing approach with hyperspectral data provide early detection and mapping of spatial patterns of black bear bark stripping in coast redwoods?

    Get PDF
    The prevalence of black bear (Ursus americanus) bark stripping in commercial redwood (Sequoia sempervirens) timer stands has been increasing in recent years. This stripping is a threat to commercial timber production because of the deleterious effects on redwood tree fitness. This study sought to unveil a remote sensing method to detect these damaged trees early and map their spatial patterns. By developing a timely monitoring method, forest timber companies can manipulate their timber harvesting routines to adapt to the consequences of the problem. We explored the utility of high spatial resolution UAV-collected hyperspectral imagery as a means for early detection of individual trees stripped by black bears. A hyperspectral sensor was used to capture ultra-high spatial and spectral information pertaining to redwood trees with no damage, those that have been recently attacked by bears, and those with old bear damage. This spectral information was assessed using the Jeffries-Matusita (JM) distance to determine regions along the electromagnetic spectrum that are useful for discerning these three-health classes. While we were able to distinguish healthy trees from trees with old damage, we were unable to distinguish healthy trees from recently damaged trees due to the inherent characteristics of redwood tree growth and the subtle spectral changes within individual tree crowns for the time period assessed. The results, however, showed that with further assessment, a time window may be identified that informs damage before trees completely lose value

    GNSS array-based acquisition: theory and implementation

    Get PDF
    This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. The term GNSS classi es those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the American GPS is already available, which coexists with the renewed Russian Glonass, the forthcoming European contribution (Galileo) along with the Chinese Compass will be operative soon. Therefore, a variety of satellite constellations and signals will be available in the next years. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. The positioning availability must be guaranteed all the time, specially in safety-critical and mission-critical services. Examining the threats against the service availability, it is important to take into account that all the present and the forthcoming GNSSs make use of Code Division Multiple Access (CDMA) techniques. The ranging signals are received with very low precorrelation signal-to-noise ratio (in the order of οΏ½οΏ½οΏ½22 dB for a receiver operating at the Earth surface). Despite that the GNSS CDMA processing gain o ers limited protection against Radio Frequency interferences (RFI), an interference with a interference-to-signal power ratio that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service, specially conventional receivers equipped with minimal or basic level of protection towards RFIs. As a consequence, RFIs (either intentional or unintentional) remain as the most important cause of performance degradation. A growing concern of this problem has appeared in recent times. Focusing our attention on the GNSS receiver, it is known that signal acquisition has the lowest sensitivity of the whole receiver operation, and, consequently, it becomes the performance bottleneck in the presence of interfering signals. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in low SNR scenarios or in the presence of wideband interferences. On the other hand, antenna arrays receivers can bene t from spatial-domain processing, and thus mitigate the e ects of interfering signals. Spatial diversity has been traditionally applied to the signal tracking operation of GNSS receivers. However, initial tracking conditions depend on signal acquisition, and there are a number of scenarios in which the acquisition process can fail as stated before. Surprisingly, to the best of our knowledge, the application of antenna arrays to GNSS signal acquisition has not received much attention. This Thesis pursues a twofold objective: on the one hand, it proposes novel arraybased acquisition algorithms using a well-established statistical detection theory framework, and on the other hand demonstrates both their real-time implementation feasibility and their performance in realistic scenarios. The Dissertation starts with a brief introduction to GNSS receivers fundamentals, providing some details about the navigation signals structure and the receiver's architecture of both GPS and Galileo systems. It follows with an analysis of GNSS signal acquisition as a detection problem, using the Neyman-Pearson (NP) detection theory framework and the single-antenna acquisition signal model. The NP approach is used here to derive both the optimum detector (known as clairvoyant detector ) and the sov called Generalized Likelihood Ratio Test (GLRT) detector, which is the basis of almost all of the current state-of-the-art acquisition algorithms. Going further, a novel detector test statistic intended to jointly acquire a set of GNSS satellites is obtained, thus reducing both the acquisition time and the required computational resources. The eff ects of the front-end bandwidth in the acquisition are also taken into account. Then, the GLRT is extended to the array signal model to obtain an original detector which is able to mitigate temporally uncorrelated interferences even if the array is unstructured and moderately uncalibrated, thus becoming one of the main contributions of this Dissertation. The key statistical feature is the assumption of an arbitrary and unknown covariance noise matrix, which attempts to capture the statistical behavior of the interferences and other non-desirable signals, while exploiting the spatial dimension provided by antenna arrays. Closed form expressions for the detection and false alarm probabilities are provided. Performance and interference rejection capability are modeled and compared both to their theoretical bound. The proposed array-based acquisition algorithm is also compared to conventional acquisition techniques performed after blind null-steering beamformer approaches, such as the power minimization algorithm. Furthermore, the detector is analyzed under realistic conditions, accounting for the presence of errors in the covariance matrix estimation, residual Doppler and delay errors, and signal quantization e ects. Theoretical results are supported by Monte Carlo simulations. As another main contribution of this Dissertation, the second part of the work deals with the design and the implementation of a novel Field Programmable Gate Array (FPGA)-based GNSS real-time antenna-array receiver platform. The platform is intended to be used as a research tool tightly coupled with software de ned GNSS receivers. A complete signal reception chain including the antenna array and the multichannel phase-coherent RF front-end for the GPS L1/ Galileo E1 was designed, implemented and tested. The details of the digital processing section of the platform, such as the array signal statistics extraction modules, are also provided. The design trade-o s and the implementation complexities were carefully analyzed and taken into account. As a proof-of-concept, the problem of GNSS vulnerability to interferences was addressed using the presented platform. The array-based acquisition algorithms introduced in this Dissertation were implemented and tested under realistic conditions. The performance of the algorithms were compared to single antenna acquisition techniques, measured under strong in-band interference scenarios, including narrow/wide band interferers and communication signals. The platform was designed to demonstrate the implementation feasibility of novel array-based acquisition algorithms, leaving the rest of the receiver operations (mainly, tracking, navigation message decoding, code and phase observables, and basic Position, Velocity and Time (PVT) solution) to a Software De ned Radio (SDR) receiver running in a personal computer, processing in real-time the spatially- ltered signal sample stream coming from the platform using a Gigabit Ethernet bus data link. In the last part of this Dissertation, we close the loop by designing and implementing such software receiver. The proposed software receiver targets multi-constellation/multi-frequency architectures, pursuing the goals of e ciency, modularity, interoperability, and exibility demanded by user domains that require non-standard features, such as intermediate signals or data extraction and algorithms interchangeability. In this context, we introduce an open-source, real-time GNSS software de ned receiver (so-named GNSS-SDR) that contributes with several novel features such as the use of software design patterns and shared memory techniques to manage e ciently the data ow between receiver blocks, the use of hardware-accelerated instructions for time-consuming vector operations like carrier wipe-o and code correlation, and the availability to compile and run on multiple software platforms and hardware architectures. At this time of writing (April 2012), the receiver enjoys of a 2-dimensional Distance Root Mean Square (DRMS) error lower than 2 meters for a GPS L1 C/A scenario with 8 satellites in lock and a Horizontal Dilution Of Precision (HDOP) of 1.2.Esta tesis aborda el problema de la adquisiciΓ³n de la seΓ±al usando arrays de antenas en el marco general de los receptores de Sistemas Globales de NavegaciΓ³n por SatΓ©lite (GNSS). El tΓ©rmino GNSS engloba aquellos sistemas de navegaciΓ³n basados en una constelaciΓ³n de satΓ©lites que emiten seΓ±ales ΓΊtiles para el posicionamiento. Aunque el GPS americano ya estΓ‘ disponible, coexistiendo con el renovado sistema ruso GLONASS, actualmente se estΓ‘ realizando un gran esfuerzo para que la contribuciΓ³n europea (Galileo), junto con el nuevo sistema chino Compass, estΓ©n operativos en breve. Por lo tanto, una gran variedad de constelaciones de satΓ©lites y seΓ±ales estarΓ‘n disponibles en los prΓ³ximos aΓ±os. Estos sistemas proporcionan las infraestructuras necesarias para una multitud de aplicaciones y servicios que demandan un servicio de posicionamiento confiable y preciso. La disponibilidad de posicionamiento se debe garantizar en todo momento, especialmente en los servicios crΓ­ticos para la seguridad de las personas y los bienes. Cuando examinamos las amenazas de la disponibilidad del servicio que ofrecen los GNSSs, es importante tener en cuenta que todos los sistemas presentes y los sistemas futuros ya planificados hacen uso de tΓ©cnicas de multiplexaciΓ³n por divisiΓ³n de cΓ³digo (CDMA). Las seΓ±ales transmitidas por los satΓ©lites son recibidas con una relaciΓ³n seΓ±al-ruido (SNR) muy baja, medida antes de la correlaciΓ³n (del orden de -22 dB para un receptor ubicado en la superficie de la tierra). A pesar de que la ganancia de procesado CDMA ofrece una protecciΓ³n inherente contra las interferencias de radiofrecuencia (RFI), esta protecciΓ³n es limitada. Una interferencia con una relaciΓ³n de potencia de interferencia a potencia de la seΓ±al que excede la ganancia de procesado puede degradar el rendimiento de los receptores o incluso negar por completo el servicio GNSS. Este riesgo es especialmente importante en receptores convencionales equipados con un nivel mΓ­nimo o bΓ‘sico de protecciΓ³n frente las RFIs. Como consecuencia, las RFIs (ya sean intencionadas o no intencionadas), se identifican como la causa mΓ‘s importante de la degradaciΓ³n del rendimiento en GNSS. El problema esta causando una preocupaciΓ³n creciente en los ΓΊltimos tiempos, ya que cada vez hay mΓ‘s servicios que dependen de los GNSSs Si centramos la atenciΓ³n en el receptor GNSS, es conocido que la adquisiciΓ³n de la seΓ±al tiene la menor sensibilidad de todas las operaciones del receptor, y, en consecuencia, se convierte en el factor limitador en la presencia de seΓ±ales interferentes. Un receptor de una sola antena puede hacer uso de la diversidad en tiempo y frecuencia para mitigar las interferencias, aunque el rendimiento de estas tΓ©cnicas se ve comprometido en escenarios con baja SNR o en presencia de interferencias de banda ancha. Por otro lado, los receptores basados en mΓΊltiples antenas se pueden beneficiar del procesado espacial, y por lo tanto mitigar los efectos de las seΓ±ales interferentes. La diversidad espacial se ha aplicado tradicionalmente a la operaciΓ³n de tracking de la seΓ±al en receptores GNSS. Sin embargo, las condiciones iniciales del tracking dependen del resultado de la adquisiciΓ³n de la seΓ±al, y como hemos visto antes, hay un nΓΊmero de situaciones en las que el proceso de adquisiciΓ³n puede fallar. En base a nuestro grado de conocimiento, la aplicaciΓ³n de los arrays de antenas a la adquisiciΓ³n de la seΓ±al GNSS no ha recibido mucha atenciΓ³n, sorprendentemente. El objetivo de esta tesis doctoral es doble: por un lado, proponer nuevos algoritmos para la adquisiciΓ³n basados en arrays de antenas, usando como marco la teorΓ­a de la detecciΓ³n de seΓ±al estadΓ­stica, y por otro lado, demostrar la viabilidad de su implementaciΓ³n y ejecuciΓ³n en tiempo real, asΓ­ como su medir su rendimiento en escenarios realistas. La tesis comienza con una breve introducciΓ³n a los fundamentos de los receptores GNSS, proporcionando algunos detalles sobre la estructura de las seΓ±ales de navegaciΓ³n y la arquitectura del receptor aplicada a los sistemas GPS y Galileo. Continua con el anΓ‘lisis de la adquisiciΓ³n GNSS como un problema de detecciΓ³n, aplicando la teorΓ­a del detector Neyman-Pearson (NP) y el modelo de seΓ±al de una ΓΊnica antena. El marco teΓ³rico del detector NP se utiliza aquΓ­ para derivar tanto el detector Γ³ptimo (conocido como detector clarividente) como la denominada Prueba Generalizada de la RazΓ³n de Verosimilitud (en inglΓ©s, Generalized Likelihood Ratio Test (GLRT)), que forma la base de prΓ‘cticamente todos los algoritmos de adquisiciΓ³n del estado del arte actual. Yendo mΓ‘s lejos, proponemos un nuevo detector diseΓ±ado para adquirir simultΓ‘neamente un conjunto de satΓ©lites, por lo tanto, obtiene una reducciΓ³n del tiempo de adquisiciΓ³n y de los recursos computacionales necesarios en el proceso, respecto a las tΓ©cnicas convencionales. El efecto del ancho de banda del receptor tambiΓ©n se ha tenido en cuenta en los anΓ‘lisis. A continuaciΓ³n, el detector GLRT se extiende al modelo de seΓ±al de array de antenas para obtener un detector nuevo que es capaz de mitigar interferencias no correladas temporalmente, incluso utilizando arrays no estructurados y moderadamente descalibrados, convirtiΓ©ndose asΓ­ en una de las principales aportaciones de esta tesis. La clave del detector es asumir una matriz de covarianza de ruido arbitraria y desconocida en el modelo de seΓ±al, que trata de captar el comportamiento estadΓ­stico de las interferencias y otras seΓ±ales no deseadas, mientras que utiliza la dimensiΓ³n espacial proporcionada por los arrays de antenas. Se han derivado las expresiones que modelan las probabilidades teΓ³ricas de detecciΓ³n y falsa alarma. El rendimiento del detector y su capacidad de rechazo a interferencias se han modelado y comparado con su lΓ­mite teΓ³rico. El algoritmo propuesto tambiΓ©n ha sido comparado con tΓ©cnicas de adquisiciΓ³n convencionales, ejecutadas utilizando la salida de conformadores de haz que utilizan algoritmos de filtrado de interferencias, como el algoritmo de minimizaciΓ³n de la potencia. AdemΓ‘s, el detector se ha analizado bajo condiciones realistas, representadas con la presencia de errores en la estimaciΓ³n de covarianzas, errores residuales en la estimaciΓ³n del Doppler y el retardo de seΓ±al, y los efectos de la cuantificaciΓ³n. Los resultados teΓ³ricos se apoyan en simulaciones de Monte Carlo. Como otra contribuciΓ³n principal de esta tesis, la segunda parte del trabajo trata sobre el diseΓ±o y la implementaciΓ³n de una nueva plataforma para receptores GNSS en tiempo real basados en array de antenas que utiliza la tecnologΓ­a de matriz programable de puertas lΓ³gicas (en ingles Field Programmable Gate Array (FPGA)). La plataforma estΓ‘ destinada a ser utilizada como una herramienta de investigaciΓ³n estrechamente acoplada con receptores GNSS definidos por software. Se ha diseΓ±ado, implementado y verificado la cadena completa de recepciΓ³n, incluyendo el array de antenas y el front-end multi-canal para las seΓ±ales GPS L1 y Galileo E1. El documento explica en detalle el procesado de seΓ±al que se realiza, como por ejemplo, la implementaciΓ³n del mΓ³dulo de extracciΓ³n de estadΓ­sticas de la seΓ±al. Los compromisos de diseΓ±o y las complejidades derivadas han sido cuidadosamente analizadas y tenidas en cuenta. La plataforma ha sido utilizada como prueba de concepto para solucionar el problema presentado de la vulnerabilidad del GNSS a las interferencias. Los algoritmos de adquisiciΓ³n introducidos en esta tesis se han implementado y probado en condiciones realistas. El rendimiento de los algoritmos se comparΓ³ con las tΓ©cnicas de adquisiciΓ³n basadas en una sola antena. Se han realizado pruebas en escenarios que contienen interferencias dentro de la banda GNSS, incluyendo interferencias de banda estrecha y banda ancha y seΓ±ales de comunicaciΓ³n. La plataforma fue diseΓ±ada para demostrar la viabilidad de la implementaciΓ³n de nuevos algoritmos de adquisiciΓ³n basados en array de antenas, dejando el resto de las operaciones del receptor (principalmente, los mΓ³dulos de tracking, decodificaciΓ³n del mensaje de navegaciΓ³n, los observables de cΓ³digo y fase, y la soluciΓ³n bΓ‘sica de PosiciΓ³n, Velocidad y Tiempo (PVT)) a un receptor basado en el concepto de Radio Definida por Software (SDR), el cual se ejecuta en un ordenador personal. El receptor procesa en tiempo real las muestras de la seΓ±al filltradas espacialmente, transmitidas usando el bus de datos Gigabit Ethernet. En la ΓΊltima parte de esta Tesis, cerramos ciclo diseΓ±ando e implementando completamente este receptor basado en software. El receptor propuesto estΓ‘ dirigido a las arquitecturas de multi-constalaciΓ³n GNSS y multi-frecuencia, persiguiendo los objetivos de eficiencia, modularidad, interoperabilidad y flexibilidad demandada por los usuarios que requieren caracterΓ­sticas no estΓ‘ndar, tales como la extracciΓ³n de seΓ±ales intermedias o de datos y intercambio de algoritmos. En este contexto, se presenta un receptor de cΓ³digo abierto que puede trabajar en tiempo real, llamado GNSS-SDR, que contribuye con varias caracterΓ­sticas nuevas. Entre ellas destacan el uso de patrones de diseΓ±o de software y tΓ©cnicas de memoria compartida para administrar de manera eficiente el uso de datos entre los bloques del receptor, el uso de la aceleraciΓ³n por hardware para las operaciones vectoriales mΓ‘s costosas, como la eliminaciΓ³n de la frecuencia Doppler y la correlaciΓ³n de cΓ³digo, y la disponibilidad para compilar y ejecutar el receptor en mΓΊltiples plataformas de software y arquitecturas de hardware. A fecha de la escritura de esta Tesis (abril de 2012), el receptor obtiene un rendimiento basado en la medida de la raΓ­z cuadrada del error cuadrΓ‘tico medio en la distancia bidimensional (en inglΓ©s, 2-dimensional Distance Root Mean Square (DRMS) error) menor de 2 metros para un escenario GPS L1 C/A con 8 satΓ©lites visibles y una diluciΓ³n de la precisiΓ³n horizontal (en inglΓ©s, Horizontal Dilution Of Precision (HDOP)) de 1.2

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore