5,540 research outputs found

    A CMOS-Based Lab-on-Chip Array for Combined Magnetic Manipulation and Opto-Chemical Sensing

    Get PDF
    Accepted versio

    An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation

    No full text
    This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-µm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model

    Optical imaging techniques in microfluidics and their applications

    Get PDF
    Microfluidic devices have undergone rapid development in recent years and provide a lab-on-a-chip solution for many biomedical and chemical applications. Optical imaging techniques are essential in microfluidics for observing and extracting information from biological or chemical samples. Traditionally, imaging in microfluidics is achieved by bench-top conventional microscopes or other bulky imaging systems. More recently, many novel compact microscopic techniques have been developed to provide a low-cost and portable solution. In this review, we provide an overview of optical imaging techniques used in microfluidics followed with their applications. We first discuss bulky imaging systems including microscopes and interferometer-based techniques, then we focus on compact imaging systems that can be better integrated with microfluidic devices, including digital in-line holography and scanning-based imaging techniques. The applications in biomedicine or chemistry are also discussed along with the specific imaging techniques

    Feasibility of an Electro-Optic Link for Bondpad-less CMOS Lab-on-Chips

    No full text
    This paper explores the feasibility of developing CMOS-based lab-on-chips to analyse the properties of a fluid, without the need for bond wires. Both inductive and electro-optical schemes are suggested as possible solutions. Specifically, this paper details a novel approach in achieving electro-optical modulation in unmodified, commercially-available CMOS technology. By exploiting the plasma dispersion effect, it is shown how mid-infrared light can be modulated using parasitic structures designed in a CMOS integrated circuit. Both the fundamental theory and practical realisation are supported with measured data from an experimental setup.Accepted versio

    A 16 x 16 CMOS amperometric microelectrode array for simultaneous electrochemical measurements

    Get PDF
    There is a requirement for an electrochemical sensor technology capable of making multivariate measurements in environmental, healthcare, and manufacturing applications. Here, we present a new device that is highly parallelized with an excellent bandwidth. For the first time, electrochemical cross-talk for a chip-based sensor is defined and characterized. The new CMOS electrochemical sensor chip is capable of simultaneously taking multiple, independent electroanalytical measurements. The chip is structured as an electrochemical cell microarray, comprised of a microelectrode array connected to embedded self-contained potentiostats. Speed and sensitivity are essential in dynamic variable electrochemical systems. Owing to the parallel function of the system, rapid data collection is possible while maintaining an appropriately low-scan rate. By performing multiple, simultaneous cyclic voltammetry scans in each of the electrochemical cells on the chip surface, we are able to show (with a cell-to-cell pitch of 456 μm) that the signal cross-talk is only 12% between nearest neighbors in a ferrocene rich solution. The system opens up the possibility to use multiple independently controlled electrochemical sensors on a single chip for applications in DNA sensing, medical diagnostics, environmental sensing, the food industry, neuronal sensing, and drug discovery

    A colorimetric CMOS-based platform for rapid total serum cholesterol quantification

    Get PDF
    Elevated cholesterol levels are associated with a greater risk of developing cardiovascular disease and other illnesses, making it a prime candidate for detection on a disposable biosensor for rapid point of care diagnostics. One of the methods to quantify cholesterol levels in human blood serum uses an optically mediated enzyme assay and a bench top spectrophotometer. The bulkiness and power hungry nature of the equipment limits its usage to laboratories. Here, we present a new disposable sensing platform that is based on a complementary metal oxide semiconductor process for total cholesterol quantification in pure blood serum. The platform that we implemented comprises readily mass-manufacturable components that exploit colorimetric changes of cholesterol oxidase and cholesterol esterase reactions. We have shown that our quantification results are comparable to that obtained by a bench top spectrophotometer. Using the implemented device, we have measured cholesterol concentration in human blood serum as low as 29 μM with a limit of detection at 13 μM, which is approximately 400 times lower than average physiological range, implying that our device also has the potential to be used for applications that require greater sensitivity

    An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis

    Get PDF
    Accepted versio
    corecore