15 research outputs found

    Hybrid Chaos Synchronization of 3-Cells Cellular Neural Network Attractors via Adaptive Control Method

    Get PDF
    Abstract: In this research work, we first discuss the properties of the 3-cells cellular neural network (CNN) attractor discovered b

    Hybrid Synchronization of the Generalized Lotka-Volterra Three-Species Biological Systems via Adaptive Control

    Get PDF
    Abstract: Since the recent research has shown the importance of biological control in many biological systems appearing in nature, this research paper investigates research in the dynamic and chaotic analysis of the generalized Lotka-Volterra three-species biological system, which was studied b

    A new two-scroll chaotic system with two nonlinearities: dynamical analysis and circuit simulation

    Get PDF
    Chaos theory has several applications in science and engineering. In this work, we announce a new two-scroll chaotic system with two nonlinearities. The dynamical properties of the system such as dissipativity, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension and bifurcation diagram are explored in detail. The presence of coexisting chaotic attractors, coexisting chaotic and periodic attractors in the system is also investigated. In addition, the offset boosting of a variable in the new chaotic system is achieved by adding a single controlled constant. It is shown that the new chaotic system has rotation symmetry about the z-axis. An electronic circuit simulation of the new two-scroll chaotic system is built using Multisim to check the feasibility of the theoretical model.

    A novel 4 dimensional hyperchaotic system with its control, Synchronization and Implementation

    Get PDF
    This paper presents a new hyperchaotic system which shows some interesting features, the system is 4-dimensional with 4 nonlinearities. An extensive numerical analysis has showed that the system has some interesting features and strange behaviors. The numerical analysis includes studying the effect of system parameters and initial conditions. Some of the important properties of the system with parameter set, in which the system is hyperchaotic, such as Lyapunov exponents and Lyapunov dimension, dissipation and symmetry are found and discussed. In the next part of our work, a tracking controller for the proposed system is designed and then a synchronization control system for two identical systems is designed. The design procedure uses combination of a simple synergetic control with adaptive updating laws to identify the unknown parameters derived basing on Lyapunov theorem. Hardware implementation based on microcontroller unit (MCU) board is proposed and tested and used to experimentally validate the designed control and synchronization systems. As an application, the designed synchronization system is used as a secure analogue communication system. Using MATLAB, Simulation study for the control and synchronization systems is presented. The simulation and experimental study have been showed excellent results

    A new 4-D hyperchaotic hidden attractor system: Its dynamics, coexisting attractors, synchronization and microcontroller implementation

    Get PDF
    In this paper, a simple 4-dimensional hyperchaotic system is introduced. The proposed system has no equilibria points, so it admits hidden attractor which is an interesting feature of chaotic systems. Another interesting feature of the proposed system is the coexisting of attractors where it shows periodic and chaotic coexisting attractors. After introducing the system, the system is analyzed dynamically using numerical and theoretical techniques. In this analysis, Lyapunov exponents and bifurcation diagrams have been used to investigate chaotic and hyperchaotic nature, the ranges of system parameters for different behaviors and the route for chaos and coexisting attractors regions. In the next part of our work, a synchronization control system for two identical systems is designed. The design procedure uses a combination of simple synergetic control with adaptive updating laws to identify the unknown parameters derived basing on Lyapunov theorem. Microcontroller (MCU) based hardware implementation system is proposed and tested by using MATLAB as a display side. As an application, the designed synchronization system is used as a secure analog communication system. The designed MCU system with MATLAB Simulation is used to validate the designed synchronization and secure communication systems and excellent results have been obtained

    Rikitake dynamo system, its circuit simulation and chaotic synchronization via quasi-sliding mode control

    Get PDF
    Rikitake dynamo system (1958) is a famous two-disk dynamo model that is capable of executing nonlinear chaotic oscillations similar to the chaotic oscillations as revealed by palaeomagnetic study. First, we detail the Rikitake dynamo system, its signal plots and important dynamic properties. Then a circuit design using Multisim is carried out for the Rikitake dynamo system. New synchronous quasi-sliding mode control (QSMC) for Rikitake chaotic system is studied in this paper. Furthermore, the selection on switching surface and the existence of QSMC scheme is also designed in this paper. The efficiency of the QSMC scheme is illustrated with MATLAB plots

    A New Chaotic System with Line of Equilibria: Dynamics, Passive Control and Circuit Design

    Get PDF
    A new chaotic system with line equilibrium is introduced in this paper. This system consists of five terms with two transcendental nonlinearities and two quadratic nonlinearities. Various tools of dynamical system such as phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation diagram and Poincarè map are used. It is interesting that this system has a line of fixed points and can display chaotic attractors. Next, this paper discusses control using passive control method. One example is given to insure the theoretical analysis. Finally, for the  new chaotic system, An electronic circuit for realizing the chaotic system has been implemented. The numerical simulation by using MATLAB 2010 and implementation of circuit simulations by using MultiSIM 10.0 have been performed in this study

    A simple multi-stable chaotic jerk system with two saddle-foci equilibrium points: analysis, synchronization via backstepping technique and MultiSim circuit design

    Get PDF
    This paper announces a new three-dimensional chaotic jerk system with two saddle-focus equilibrium points and gives a dynamic analysis of the properties of the jerk system such as Lyapunov exponents, phase portraits, Kaplan-Yorke dimension and equilibrium points. By modifying the Genesio-Tesi jerk dynamics (1992), a new jerk system is derived in this research study. The new jerk model is equipped with multistability and dissipative chaos with two saddle-foci equilibrium points. By invoking backstepping technique, new results for synchronizing chaos between the proposed jerk models are successfully yielded. MultiSim software is used to implement a circuit model for the new jerk dynamics. A good qualitative agreement has been shown between the MATLAB simulations of the theoretical chaotic jerk model and the MultiSIM result
    corecore