30,969 research outputs found

    Regulation of the Surfactant Serrawettin W2 in Serratia Sp. Strain SCBI

    Get PDF
    A novel Serratia sp (termed SCBI) forms an association with nematodes (South African Caenorhabditis briggsae) that were isolated by bait trapping in the greater wax moth, Galleria mellonella. This association represents a new microbe-nematode relationship and potentially a nascent entomopathogenic lifestyle. Inactivation of the hemolysin in Serratia sp. SCBI resulted in loss of hemolysis, but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA, which produces the surfactant serrawettin W2. A series of mutations in the 17 Kb swrA gene gave variable results in antibiotic activity, motility, virulence and hemolysin activities. The locations of three of the four mutations were confirmed by PCR analysis. The regulation of the expression of the swrA and hemolysin genes in swrA and hemolysin mutants was investigated by RT-qPCR using primer sets for different regions of these two genes. Furthermore, the cDNA of the 17 Kb transcript of swrA was generated by reverse transcription and was analyzed by PCR with the primers used to confirm the swrA mutants. Results indicate that the swrA transcript is expressed differently at various points in its sequence. Mutations appear to affect expression differently depending on the location, suggesting complex regulatory mechanisms and the presence of multiple promoters within the transcript

    Single cell transcriptome analysis using next generation sequencing.

    Get PDF
    The heterogeneity of tissues, especially in cancer research, is a central issue in transcriptome analysis. In recent years, research has primarily focused on the development of methods for single cell analysis. Single cell analysis aims at gaining (novel) insights into biological processes of healthy and diseased cells. Some of the challenges in transcriptome analysis concern low abundance of sample starting material, necessary sample amplification steps and subsequent analysis. In this study, two fundamentally different approaches to amplification were compared using next-generation sequencing analysis: I. exponential amplification using polymerase-chain-reaction (PCR) and II. linear amplification. For both approaches, protocols for single cell extraction, cell lysis, cDNA synthesis, cDNA amplification and preparation of next-generation sequencing libraries were developed. We could successfully show that transcriptome analysis of low numbers of cells is feasible with both exponential and linear amplification. Using exponential amplification, the highest amplification rates up to 106 were possible. The reproducibility of results is a strength of the linear amplification method. The analysis of next generation sequencing data in single cell samples showed detectable expression in at least 16.000 genes. The variance between samples results in a need to work with a greater amount of biological replicates. In summary it can be said that single cell transcriptome analysis with next generation sequencing is possible but improvements leading to a higher yield of transcriptome reads is required. In the near future by comparing single cancer cells with healthy ones for example, a basis for improved prognosis and diagnosis can be realised

    Multiplex Detection of Aspergillus fumigatus Mycoviruses.

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Mycoviruses are viruses that naturally infect and replicate in fungi. They are widespread in all major fungal groups including plant and animal pathogenic fungi. Several dsRNA mycoviruses have been reported in Aspergillus fumigatus. Multiplex polymerase chain reaction (PCR) amplification is a version of PCR that enables amplification of different targets simultaneously. This technique has been widely used for detection and differentiation of viruses especially plant viruses such as those which infect tobacco, potato and garlic. For rapid detection, multiplex RT-PCR was developed to screen new isolates for the presence of A. fumigatus mycoviruses. Aspergillus fumigatus chrysovirus (AfuCV), Aspergillus fumigatus partitivirus (AfuPV-1), and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1) dsRNAs were amplified in separate reactions using a mixture of multiplex primer pairs. It was demonstrated that in the presence of a single infection, primer pair mixtures only amplify the corresponding single virus infection. Mixed infections using dual or triple combinations of dsRNA viruses were also amplified simultaneously using multiplex RT-PCR. Up until now, methods for the rapid detection of Aspergillus mycoviruses have been restricted to small scale dsRNA extraction approaches which are laborious and for large numbers of samples not as sensitive as RT-PCR. The multiplex RT-PCR assay developed here will be useful for studies on determining the incidence of A. fumigatus mycoviruses. This is the first report on multiplex detection of A. fumigatus mycovirusesPeer reviewe

    Capturing the ‘ome’ : the expanding molecular toolbox for RNA and DNA library construction

    Get PDF
    All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application

    A new approach to understanding T cell development: the isolation and characterization of immature CD4-, CD8-, CD3- T cell cDNAs by subtraction cloning

    Get PDF
    During T cell development in the mammalian thymus, immature T cells are observed that lack the cell surface markers CD4, CD8, and CD3. A subtracted cDNA library was constructed to isolate cDNAs that are specific for these immature T cells. Tissue-specific expression of 97 individual cDNAs were examined using different cell types by Northern blot analysis, and six cDNAs were analyzed by reverse transcriptase (RT) polymerase chain reaction (PCR) detection of RNA. Approximately 50% of the clones could not be detected on Northern blots, and 40% of the clones were expressed by at least one other cell-type including monocytes, mature T cells, and B cells. Eight cDNA clones appear to be specific for the CD4-, CD8-, CD3- T cell line, used to construct the library, as determined by Northern blot analysis. In addition, 330 cDNA clones were subjected to partial automated DNA sequence determination. Database searches, with both nucleotide and protein translations, revealed cDNAs that exhibit interesting similarities to human cell-cycle gene 1, platelet-derived growth factor receptor, c-fms oncogene (CSF-1) receptor, and members of the immunoglobulin gene superfamily. This approach of employing subtraction coupled with large scale partial cDNA sequence determination can be useful to identify genes that may be involved in early T cell growth, cellular recognition or differentiation

    Evaluation of Stem-Loop Reverse Transcription and Poly-A Tail Extension in MicroRNA Analysis of Body Fluids

    Get PDF
    MicroRNA has been demonstrated to be a viable tool for body fluid identification purposes in forensic casework. Stem-loop reverse transcription (slRT) is regularly used for cDNA synthesis from mature miRNA, along with poly-A tail extension. Both have been used in a forensic context, but no direct comparison has been carried out. It has also not been shown whether poly-A tail extension can be used upon DNA extracts, as previously shown with slRT. Blood and saliva samples were collected and underwent DNA extraction with or without on-column DNA digestion. All samples were then aliquoted and underwent slRT and poly-A tail extension separately. qPCR was then conducted targeting microRNA markers hsa-miR-451 and hsa-miR-205. It was shown that the DNA digestion step did not affect the ability to differentiate between blood and saliva. It was also shown that this differentiation was possible using poly-A tail extension, and that poly-A tail extension exhibited more amplification than slRT. So whilst the choice of slRT and poly-A tail extension for the purpose of forensic body fluid identification is not critical, it may be best to use poly-A tail extension, particularly where there are low traces of sample

    Neuronal Expression of Neural Nitric Oxide Synthase (nNOS) Protein is Suppressed by an Antisense RNA Transcribed from an NOS Pseudogene

    Get PDF
    Here, we show that a nitric oxide synthase (NOS) pseudogene is expressed in the CNS of the snail Lymnaea stagnalis. The pseudo-NOS transcript includes a region of significant antisense homology to a previously reported neuronal NOS (nNOS)-encoding mRNA. This suggested that the pseudo-NOS transcript acts as a natural antisense regulator of nNOS protein synthesis. In support of this, we show that both the nNOS-encoding and the pseudo-NOS transcripts are coexpressed in giant identified neurons (the cerebral giant cells) in the cerebral ganglion. Moreover, reverse transcription-PCR experiments on RNA isolated from the CNS establish that stable RNA-RNA duplex molecules do form between the two transcripts in vivo. Using an in vitro translation assay, we further demonstrate that the antisense region of the pseudogene transcript prevents the translation of nNOS protein from the nNOS-encoding mRNA. By analyzing NOS RNA and nNOS protein expression in two different identified neurons, we find that when both the nNOS-encoding and the pseudo-NOS transcripts are present in the same neuron, nNOS enzyme activity is substantially suppressed. Importantly, these results show that a natural antisense mechanism can mediate the translational control of nNOS expression in the Lymnaea CNS. Our findings also suggest that transcribed pseudogenes are not entirely without purpose and are a potential source of a new class of regulatory gene in the nervous system

    Host range, purification, and genetic variability in Sweet potato chlorotic fleck virus

    Get PDF
    Sweet potato chlorotic fleck virus (SPCFV) has recently been classified as a putative new member of the genus Carlavirus (family Flexiviridae) on the basis of its molecular properties. In this study, SPCFV was characterized in terms of host range, physical and biological characteristics, and genetic variability. In addition to sweet potato, SPCFV infected some plant species in the families Convolvulaceae, Chenopodiaceae, and Solanaceae. Limited numbers of virus particles were observed in the assimilation parenchyma cells of infected plant tissues; some cells had a distorted and enlarged endoplasmic reticulum though without any cytoplasmic and amorphous inclusions. The normal length of SPCFV particles was determined to be approximately 800 nm. In enzyme-linked immunosorbent assays, polyclonal antibodies raised against purified SPCFV virions were able to detect the virus in infected sweet potato and indicator plant tissues. In immunoelectron microscopy, SPCFV particles were all strongly decorated when reacted with homologous antiserum. Comparison of the 3′ terminal part of the genome of a range of geographically diverse isolates revealed a high level of genetic diversity. The amino acid sequence identity in the coat protein and the nucleic acid binding protein ranged from 89 to 99.7% and from 75.9 to 99.2%, respectively. Phylogenetic analysis of both proteins showed a geographically associated clustering into two genogroups

    Isolation of a transcriptionally active element of high copy number retrotransposons in sweetpotato genome

    Get PDF
    Many plant retrotransposons have been characterized, but only three families (Tnt1, Tto1 and Tos17) have been demonstrated to be transpositionally competent. We followed a novel approach that enabled us to identify an active element of the Ty1-copia retrotransposon family with estimated 400 copies in the sweetpotato genome. DNA sequences of Ty1 -copia reverse transcriptase (RTase) from the sweetpotato genome were analyzed, and a group of retrotransposon copies probably formed by recent transposition events was further analyzed. 3’RACE on callus cDNA amplified transcripts containing long terminal repeats (LTR) of this group. The sequence -specific amplification polymorphism (S-SAP) patterns of the LTR sequence in the genomic DNA were compared between a normal plant and callus lines derived from it. A callus -specific S-SAP product was found into which the retrotransposon detected by the 3’RACE had been transposed apparently during cell culture. We conclude that our approach provides an effective way to identify active elements of retrotransposons with high copy numbers.</p
    corecore