3,744 research outputs found

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201

    Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different body postures

    Get PDF
    Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute (BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the five body postures namely standing, sitting at 90°, Flower’s position at 45°, supine, and right lateral recumbent. There was no significant difference in measured RR between IJP and reference sensors, between two trials, or between different body postures (all p \u3e 0.05). Body posture did not have any significant effect on the difference of RR measurements between IJP and the reference sensors (difference \u3c 0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure the RR at different body postures, which makes it a promising, simple, and user-friendly option for clinical and daily uses

    IoT Platform for COVID-19 Prevention and Control: A Survey

    Full text link
    As a result of the worldwide transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has evolved into an unprecedented pandemic. Currently, with unavailable pharmaceutical treatments and vaccines, this novel coronavirus results in a great impact on public health, human society, and global economy, which is likely to last for many years. One of the lessons learned from the COVID-19 pandemic is that a long-term system with non-pharmaceutical interventions for preventing and controlling new infectious diseases is desirable to be implemented. Internet of things (IoT) platform is preferred to be utilized to achieve this goal, due to its ubiquitous sensing ability and seamless connectivity. IoT technology is changing our lives through smart healthcare, smart home, and smart city, which aims to build a more convenient and intelligent community. This paper presents how the IoT could be incorporated into the epidemic prevention and control system. Specifically, we demonstrate a potential fog-cloud combined IoT platform that can be used in the systematic and intelligent COVID-19 prevention and control, which involves five interventions including COVID-19 Symptom Diagnosis, Quarantine Monitoring, Contact Tracing & Social Distancing, COVID-19 Outbreak Forecasting, and SARS-CoV-2 Mutation Tracking. We investigate and review the state-of-the-art literatures of these five interventions to present the capabilities of IoT in countering against the current COVID-19 pandemic or future infectious disease epidemics.Comment: 12 pages; Submitted to IEEE Internet of Things Journa

    Wireless communication platform based on an embroidered antenna-sensor for real-time breathing detection

    Get PDF
    Wearable technology has been getting more attention for monitoring vital signs in various medical fields, particularly in breathing monitoring. To monitor respiratory patterns, there is a current set of challenges related to the lack of user comfort, reliability, and rigidity of the systems, as well as challenges related to processing data. Therefore, the need to develop user-friendly and reliable wireless approaches to address these problems is required. In this paper, a novel, full, compact textile breathing sensor is investigated. Specifically, an embroidered meander dipole antenna sensor integrated into an e-textile T-shirt with a Bluetooth transmitter for real-time breathing monitoring was developed and tested. The proposed antenna-based sensor is designed to transmit data over wireless communication networks at 2.4 GHz and is made of a silver-coated nylon thread. The sensing mechanism of the proposed system is based on the detection of a received signal strength indicator (RSSI) transmitted wirelessly by the antenna-based sensor, which is found to be sensitive to stretch. The respiratory system is placed on the middle of the human chest; the area of the proposed system is 4.5 × 0.48 cm2 , with 2.36 × 3.17 cm2 covered by the transmitter module. The respiratory signal is extracted from the variation of the RSSI signal emitted at 2.4 GHz from the detuned embroidered antenna-based sensor embedded into a commercial T-shirt and detected using a laptop. The experimental results demonstrated that breathing signals can be acquired wirelessly by the RSSI via Bluetooth. The RSSI range change was from -80 dBm to -72 dBm, -88 dBm to -79 dBm and -85 dBm to -80 dBm during inspiration and expiration for normal breathing, speaking and movement, respectively. We tested the feasibility assessment for breathing monitoring and we demonstrated experimentally that the standard wireless networks, which measure the RSSI signal via standard Bluetooth protocol, can be used to detect human respiratory status and patterns in real time.This work was supported by the Spanish Government-MICINN under Projects TED2021- 131209B-I00 and PID2021-124288OB-I00.Peer ReviewedPostprint (published version

    Breathing Monitoring and Pattern Recognition with Wearable Sensors

    Get PDF
    This chapter introduces the anatomy and physiology of the respiratory system, and the reasons for measuring breathing events, particularly, using wearable sensors. Respiratory monitoring is vital including detection of sleep apnea and measurement of respiratory rate. The automatic detection of breathing patterns is equally important in other respiratory rehabilitation therapies, for example, magnetic resonance exams for respiratory triggered imaging, and synchronized functional electrical stimulation. In this context, the goal of many research groups is to create wearable devices able to monitor breathing activity continuously, under natural physiological conditions in different environments. Therefore, wearable sensors that have been used recently as well as the main signal processing methods for breathing analysis are discussed. The following sensor technologies are presented: acoustic, resistive, inductive, humidity, acceleration, pressure, electromyography, impedance, and infrared. New technologies open the door to future methods of noninvasive breathing analysis using wearable sensors associated with machine learning techniques for pattern detection

    Wearable sensors for respiration monitoring: a review

    Get PDF
    This paper provides an overview of flexible and wearable respiration sensors with emphasis on their significance in healthcare applications. The paper classifies these sensors based on their operating frequency distinguishing between high-frequency sensors, which operate above 10 MHz, and low-frequency sensors, which operate below this level. The operating principles of breathing sensors as well as the materials and fabrication techniques employed in their design are addressed. The existing research highlights the need for robust and flexible materials to enable the development of reliable and comfortable sensors. Finally, the paper presents potential research directions and proposes research challenges in the field of flexible and wearable respiration sensors. By identifying emerging trends and gaps in knowledge, this review can encourage further advancements and innovation in the rapidly evolving domain of flexible and wearable sensors.This work was supported by the Spanish Government (MICINN) under Projects TED2021-131209B-I00 and PID2021-124288OB-I00.Peer ReviewedPostprint (published version

    Identification of sleep apnea events using discrete wavelet transform of respiration, ECG and accelerometer signals

    Get PDF
    Sleep apnea is a common sleep disorder in which patient sleep patterns are disrupted due to recurrent pauses in breathing or by instances of abnormally low breathing. Current gold standard tests for the detection of apnea events are costly and have the addition of long waiting times. This paper investigates the use of cheap and easy to use sensors for the identification of sleep apnea events. Combinations of respiration, electrocardiography (ECG) and acceleration signals were analysed. Results show that using features, formed using the discrete wavelet transform (DWT), from the ECG and acceleration signals provided the highest classification accuracy, with an F1 score of 0.914. However, the novel employment of just the accelerometer signal during classification provided a comparable F1 score of 0.879. By employing one or a combination of the analysed sensors a preliminary test for sleep apnea, prior to the requirement for gold standard testing, can be performed
    corecore