5,458 research outputs found

    Ontology-based model-driven patterns for notification-oriented data-intensive enterprise information systems

    Get PDF
    International audienceIn the fourth industrial revolution, the current Enterprise Information Systems (EIS) are facing a set of new challenges raised by the applications of Cyber-Physical Systems (CPS) and Internet of Things (IoT). In this scenario, a data-intensive EIS involves networks of physical objects with sensing, data collection, transmission and actuation capabilities, and vast endpoints in the cloud, thereby offering large amounts of data. Such systems can be considered as a multidisciplinary complex system with strong interrelations between the involved components. In order to cope with the big heterogeneousness of those physical objects and their intrinsic information, the authors propose a notification-based approach derived from the so-called Notification Oriented Paradigm (NOP), a new rule and event driven approach for software and hardware specification and execution. However, the heterogeneity of those information and their interpretation relatively to an evolving context impose the definition of model-driven patterns based on some formal knowledge modelled by a set of skill-based ontologies. Thus, the paper focuses on the open issue related to the formalisation of such ontology-based patterns for their verification, ensuring the coherence of the whole set of data in each contextual engineering domain involved in the EIS

    Supporting Interoperability of Virtual Factories

    Get PDF
    The manufacturing industry is entering a new era. This emerging era starts with the integration of new ICT technologies and collaboration applications into traditional manufacturing practices and processes, such as manufacturing 2.0. Manufacturing 2.0 has been conceptualised as a system that goes beyond the factory floor, and paradigms of “manufacturing as an ecosystem” have emerged. The virtual factory is one of the important concepts and foundations central to the realization of future manufacturing. In this paper, we take a look into the current research on virtual factories and propose a new approach to improve interoperability through the integration of different proprietary, legacy and existing solutions

    Supporting Collaborative Business Processes: a BPaaS Approach.

    Get PDF
    Collaborative business processes are increasingly driven by business flexibility and agility. Cloud-based business process management services have provided small medium enterprises (SMEs) with a pay-per-use manner for their daily business needs, i.e. some simple business process applications, e.g. salesforce provides cloud-based CRM to boost SMEs' sales. This raises the question how cloud-based business process management solutions can support the fast pace of change of business collaborations among business partners? For example, collaborative processes for managing industrial incidents are short term, low frequency processes. This paper proposes an architecture meta-model, which is used to design the concrete architecture and to further analyse the performance of the proposed solution. A real world case of collaborative processes for incident and maintenance notifi cations is used to explain the design and implementation of the cloud-based solution for supporting collaborative business processes. Service improvement of the new solution and computing power costs are analysed accordingly

    Model-driven data-intensive Enterprise Information Systems

    Get PDF
    publishersversionpublishe

    A cloud-based supply chain management system: effects on supply chain responsiveness

    Get PDF
    Purpose: Despite the ongoing calls for the incorporation of the cloud utility model, the effect of the cloud on elements of supply chain performance is still an evolving area of research. In this paper, we develop the architecture of a cloud-based supply chain management (C-SCM) ecosystem and explore how it enhances supply chain responsiveness. Design/methodology/approach: First, we discuss the potential benefits that cloud computing can yield compared to existing mature SCM information systems and solutions through a comprehensive literature review. We conceptualize SCR in terms of the level of visibility in the supply chain, supply chain flexibility, and rapid detection and reaction to changes and then we build the detailed architecture of a cloud based SCM system. The proposed ecosystem introduces a view of SCM and the associated practices when transferred to cloud environments. The potential to enhance SCR through the cloud is explored with scenarios on a case of supply chain operations in fashion retail industry. Findings: Our findings show that the proposed system can enhance all three dimensions of SCR. Implications for supply chain practice and how companies can migrate to a cloud supply chain are drawn. Originality/Value: Given that the development, creation, and delivery of goods and services is increasingly becoming a joint effort of several parties in a supply chain, we contribute to existing literature, by introducing a comprehensive cloud-based SCM system and show how companies can enhance their supply chain responsiveness

    Cyber-physical manufacturing systems: An architecture for sensor integration, production line simulation and cloud services

    Get PDF
    none9noThe pillars of Industry 4.0 require the integration of a modern smart factory, data storage in the Cloud, access to the Cloud for data analytics, and information sharing at the software level for simulation and hardware-in-the-loop (HIL) capabilities. The resulting cyber-physical system (CPS) is often termed the cyber-physical manufacturing system, and it has become crucial to cope with this increased system complexity and to attain the desired performances. However, since a great number of old production systems are based on monolithic architectures with limited external communication ports and reduced local computational capabilities, it is difficult to ensure such production lines are compliant with the Industry 4.0 pillars. A wireless sensor network is one solution for the smart connection of a production line to a CPS elaborating data through cloud computing. The scope of this research work lies in developing a modular software architecture based on the open service gateway initiative framework, which is able to seamlessly integrate both hardware and software wireless sensors, send data into the Cloud for further data analysis and enable both HIL and cloud computing capabilities. The CPS architecture was initially tested using HIL tools before it was deployed within a real manufacturing line for data collection and analysis over a period of two months.openPrist Mariorosario; Monteriu' Andrea; Pallotta Emanuele; Cicconi Paolo; Freddi Alessandro; Giuggioloni Federico; Caizer Eduard; Verdini Carlo; Longhi SauroPrist, Mariorosario; Monteriu', Andrea; Pallotta, Emanuele; Cicconi, Paolo; Freddi, Alessandro; Giuggioloni, Federico; Caizer, Eduard; Verdini, Carlo; Longhi, Saur

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory\u2019s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of \u201csocial\u201d and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization\u2019s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory\u2019s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests
    corecore