1,143 research outputs found

    Regular systems of paths and families of convex sets in convex position

    Full text link
    In this paper we show that every sufficiently large family of convex bodies in the plane has a large subfamily in convex position provided that the number of common tangents of each pair of bodies is bounded and every subfamily of size five is in convex position. (If each pair of bodies have at most two common tangents it is enough to assume that every triple is in convex position, and likewise, if each pair of bodies have at most four common tangents it is enough to assume that every quadruple is in convex position.) This confirms a conjecture of Pach and Toth, and generalizes a theorem of Bisztriczky and Fejes Toth. Our results on families of convex bodies are consequences of more general Ramsey-type results about the crossing patterns of systems of graphs of continuous functions f:[0,1]→Rf:[0,1] \to \mathbb{R}. On our way towards proving the Pach-Toth conjecture we obtain a combinatorial characterization of such systems of graphs in which all subsystems of equal size induce equivalent crossing patterns. These highly organized structures are what we call regular systems of paths and they are natural generalizations of the notions of cups and caps from the famous theorem of Erdos and Szekeres. The characterization of regular systems is combinatorial and introduces some auxiliary structures which may be of independent interest

    Optimal 3D Angular Resolution for Low-Degree Graphs

    Full text link
    We show that every graph of maximum degree three can be drawn in three dimensions with at most two bends per edge, and with 120-degree angles between any two edge segments meeting at a vertex or a bend. We show that every graph of maximum degree four can be drawn in three dimensions with at most three bends per edge, and with 109.5-degree angles, i.e., the angular resolution of the diamond lattice, between any two edge segments meeting at a vertex or bend.Comment: 18 pages, 10 figures. Extended version of paper to appear in Proc. 18th Int. Symp. Graph Drawing, Konstanz, Germany, 201

    Embedded graph invariants in Chern-Simons theory

    Get PDF
    Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines - an embedded graph invariant. Using a slight generalization of the variational method, lowest-order results for invariants for arbitrary valence graphs are derived; gauge invariant operators are introduced; and some higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. Though, without a global projection of the graph, there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity - as a way of relating frames at distinct vertices.Comment: 20 pages; RevTex; with approx 50 ps figures; References added, introduction rewritten, version to be published in Nuc. Phys.
    • …
    corecore