2,841 research outputs found

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    A Computable Measure of Algorithmic Probability by Finite Approximations with an Application to Integer Sequences

    Get PDF
    Given the widespread use of lossless compression algorithms to approximate algorithmic (Kolmogorov-Chaitin) complexity, and that lossless compression algorithms fall short at characterizing patterns other than statistical ones not different to entropy estimations, here we explore an alternative and complementary approach. We study formal properties of a Levin-inspired measure mm calculated from the output distribution of small Turing machines. We introduce and justify finite approximations mkm_k that have been used in some applications as an alternative to lossless compression algorithms for approximating algorithmic (Kolmogorov-Chaitin) complexity. We provide proofs of the relevant properties of both mm and mkm_k and compare them to Levin's Universal Distribution. We provide error estimations of mkm_k with respect to mm. Finally, we present an application to integer sequences from the Online Encyclopedia of Integer Sequences which suggests that our AP-based measures may characterize non-statistical patterns, and we report interesting correlations with textual, function and program description lengths of the said sequences.Comment: As accepted by the journal Complexity (Wiley/Hindawi

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201

    Numerical Evaluation of Algorithmic Complexity for Short Strings: A Glance into the Innermost Structure of Randomness

    Full text link
    We describe an alternative method (to compression) that combines several theoretical and experimental results to numerically approximate the algorithmic (Kolmogorov-Chaitin) complexity of all n=182n\sum_{n=1}^82^n bit strings up to 8 bits long, and for some between 9 and 16 bits long. This is done by an exhaustive execution of all deterministic 2-symbol Turing machines with up to 4 states for which the halting times are known thanks to the Busy Beaver problem, that is 11019960576 machines. An output frequency distribution is then computed, from which the algorithmic probability is calculated and the algorithmic complexity evaluated by way of the (Levin-Zvonkin-Chaitin) coding theorem.Comment: 29 pages, 5 figures. Version as accepted by the journal Applied Mathematics and Computatio
    corecore