2,164 research outputs found

    On Murty-Simon Conjecture II

    Full text link
    A graph is diameter two edge-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter two edge-critical graph on nn vertices is at most ⌊n24⌋\lfloor \frac{n^{2}}{4} \rfloor and the extremal graph is the complete bipartite graph K⌊n2⌋,⌈n2⌉K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}. In the series papers [7-9], the Murty-Simon Conjecture stated by Haynes et al. is not the original conjecture, indeed, it is only for the diameter two edge-critical graphs of even order. In this paper, we completely prove the Murty-Simon Conjecture for the graphs whose complements have vertex connectivity ℓ\ell, where ℓ=1,2,3\ell = 1, 2, 3; and for the graphs whose complements have an independent vertex cut of cardinality at least three.Comment: 9 pages, submitted for publication on May 10, 201

    3-Factor-criticality in double domination edge critical graphs

    Full text link
    A vertex subset SS of a graph GG is a double dominating set of GG if ∣N[v]∩S∣≥2|N[v]\cap S|\geq 2 for each vertex vv of GG, where N[v]N[v] is the set of the vertex vv and vertices adjacent to vv. The double domination number of GG, denoted by γ×2(G)\gamma_{\times 2}(G), is the cardinality of a smallest double dominating set of GG. A graph GG is said to be double domination edge critical if γ×2(G+e)<γ×2(G)\gamma_{\times 2}(G+e)<\gamma_{\times 2}(G) for any edge e∉Ee \notin E. A double domination edge critical graph GG with γ×2(G)=k\gamma_{\times 2}(G)=k is called kk-γ×2(G)\gamma_{\times 2}(G)-critical. A graph GG is rr-factor-critical if G−SG-S has a perfect matching for each set SS of rr vertices in GG. In this paper we show that GG is 3-factor-critical if GG is a 3-connected claw-free 44-γ×2(G)\gamma_{\times 2}(G)-critical graph of odd order with minimum degree at least 4 except a family of graphs.Comment: 14 page

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Locating-total dominating sets in twin-free graphs: a conjecture

    Full text link
    A total dominating set of a graph GG is a set DD of vertices of GG such that every vertex of GG has a neighbor in DD. A locating-total dominating set of GG is a total dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-total domination number of GG, denoted LT(G)LT(G), is the minimum cardinality of a locating-total dominating set in GG. It is well-known that every connected graph of order n≥3n \geq 3 has a total dominating set of size at most 23n\frac{2}{3}n. We conjecture that if GG is a twin-free graph of order nn with no isolated vertex, then LT(G)≤23nLT(G) \leq \frac{2}{3}n. We prove the conjecture for graphs without 44-cycles as a subgraph. We also prove that if GG is a twin-free graph of order nn, then LT(G)≤34nLT(G) \le \frac{3}{4}n.Comment: 18 pages, 1 figur
    • …
    corecore