19,114 research outputs found

    Note on the upper bound of the rainbow index of a graph

    Full text link
    A path in an edge-colored graph GG, where adjacent edges may be colored the same, is a rainbow path if every two edges of it receive distinct colors. The rainbow connection number of a connected graph GG, denoted by rc(G)rc(G), is the minimum number of colors that are needed to color the edges of GG such that there exists a rainbow path connecting every two vertices of GG. Similarly, a tree in GG is a rainbow~tree if no two edges of it receive the same color. The minimum number of colors that are needed in an edge-coloring of GG such that there is a rainbow tree connecting SS for each kk-subset SS of V(G)V(G) is called the kk-rainbow index of GG, denoted by rxk(G)rx_k(G), where kk is an integer such that 2≤k≤n2\leq k\leq n. Chakraborty et al. got the following result: For every ϵ>0\epsilon> 0, a connected graph with minimum degree at least ϵn\epsilon n has bounded rainbow connection, where the bound depends only on ϵ\epsilon. Krivelevich and Yuster proved that if GG has nn vertices and the minimum degree δ(G)\delta(G) then rc(G)<20n/δ(G)rc(G)<20n/\delta(G). This bound was later improved to 3n/(δ(G)+1)+33n/(\delta(G)+1)+3 by Chandran et al. Since rc(G)=rx2(G)rc(G)=rx_2(G), a natural problem arises: for a general kk determining the true behavior of rxk(G)rx_k(G) as a function of the minimum degree δ(G)\delta(G). In this paper, we give upper bounds of rxk(G)rx_k(G) in terms of the minimum degree δ(G)\delta(G) in different ways, namely, via Szemer\'{e}di's Regularity Lemma, connected 22-step dominating sets, connected (k−1)(k-1)-dominating sets and kk-dominating sets of GG.Comment: 12 pages. arXiv admin note: text overlap with arXiv:0902.1255 by other author

    A note on 2--bisections of claw--free cubic graphs

    Full text link
    A \emph{kk--bisection} of a bridgeless cubic graph GG is a 22--colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes have order at most kk. Ban and Linial conjectured that {\em every bridgeless cubic graph admits a 22--bisection except for the Petersen graph}. In this note, we prove Ban--Linial's conjecture for claw--free cubic graphs

    Large-q series expansion for the ground state degeneracy of the q-state Potts antiferromagnet on the (3.12^2) lattice

    Full text link
    We calculate the large-qq series expansion for the ground state degeneracy (= exponent of the ground state entropy) per site of the qq-state Potts antiferromagnet on the (3⋅122)(3 \cdot 12^2) lattice, to order O(y19)O(y^{19}), where y=1/(q−1)y=1/(q-1). We note a remarkable agreement, to O(y18)O(y^{18}), between this series and a rigorous lower bound derived recently.Comment: 10 pages, Latex, 3 encapsulated postscript figures, to appear in Phys. Rev.
    • …
    corecore