13,197 research outputs found

    Adversary Lower Bound for Element Distinctness with Small Range

    Full text link
    The Element Distinctness problem is to decide whether each character of an input string is unique. The quantum query complexity of Element Distinctness is known to be Θ(N2/3)\Theta(N^{2/3}); the polynomial method gives a tight lower bound for any input alphabet, while a tight adversary construction was only known for alphabets of size Ω(N2)\Omega(N^2). We construct a tight Ω(N2/3)\Omega(N^{2/3}) adversary lower bound for Element Distinctness with minimal non-trivial alphabet size, which equals the length of the input. This result may help to improve lower bounds for other related query problems.Comment: 22 pages. v2: one figure added, updated references, and minor typos fixed. v3: minor typos fixe

    On the Power of Non-Adaptive Learning Graphs

    Full text link
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays, and generalizes the quantum query lower bound for the kk-sum problem derived recently in arXiv:1206.6528. Finally, we use these results to show that the learning graph for the triangle problem from arXiv:1210.1014 is almost optimal in these settings. This also gives a quantum query lower bound for the triangle-sum problem.Comment: 16 pages, 1.5 figures v2: the main result generalised for all certificate structures, a bug in the proof of Proposition 17 fixe

    Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem

    Get PDF
    Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.Comment: 21 page

    Towards Rigorous Derivation of Quantum Kinetic Equations

    Full text link
    We develop a rigorous formalism for the description of the evolution of states of quantum many-particle systems in terms of a one-particle density operator. For initial states which are specified in terms of a one-particle density operator the equivalence of the description of the evolution of quantum many-particle states by the Cauchy problem of the quantum BBGKY hierarchy and by the Cauchy problem of the generalized quantum kinetic equation together with a sequence of explicitly defined functionals of a solution of stated kinetic equation is established in the space of trace class operators. The links of the specific quantum kinetic equations with the generalized quantum kinetic equation are discussed.Comment: 25 page

    Boundary Conditions on Internal Three-Body Wave Functions

    Get PDF
    For a three-body system, a quantum wave function Ψmℓ\Psi^\ell_m with definite ℓ\ell and mm quantum numbers may be expressed in terms of an internal wave function χkℓ\chi^\ell_k which is a function of three internal coordinates. This article provides necessary and sufficient constraints on χkℓ\chi^\ell_k to ensure that the external wave function Ψmℓ\Psi^\ell_m is analytic. These constraints effectively amount to boundary conditions on χkℓ\chi^\ell_k and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r∣m∣r^{|m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.Comment: 41 pages, submitted to Phys. Rev.
    • …
    corecore