2,062 research outputs found

    Quantified CTL: Expressiveness and Complexity

    Full text link
    While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterise the complexity of its model-checking and satisfiability problems, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy)

    Complexity Results for Modal Dependence Logic

    Get PDF
    Modal dependence logic was introduced recently by V\"a\"an\"anen. It enhances the basic modal language by an operator =(). For propositional variables p_1,...,p_n, =(p_1,...,p_(n-1);p_n) intuitively states that the value of p_n is determined by those of p_1,...,p_(n-1). Sevenster (J. Logic and Computation, 2009) showed that satisfiability for modal dependence logic is complete for nondeterministic exponential time. In this paper we consider fragments of modal dependence logic obtained by restricting the set of allowed propositional connectives. We show that satisfibility for poor man's dependence logic, the language consisting of formulas built from literals and dependence atoms using conjunction, necessity and possibility (i.e., disallowing disjunction), remains NEXPTIME-complete. If we only allow monotone formulas (without negation, but with disjunction), the complexity drops to PSPACE-completeness. We also extend V\"a\"an\"anen's language by allowing classical disjunction besides dependence disjunction and show that the satisfiability problem remains NEXPTIME-complete. If we then disallow both negation and dependence disjunction, satistiability is complete for the second level of the polynomial hierarchy. In this way we completely classify the computational complexity of the satisfiability problem for all restrictions of propositional and dependence operators considered by V\"a\"an\"anen and Sevenster.Comment: 22 pages, full version of CSL 2010 pape

    Existentially Restricted Quantified Constraint Satisfaction

    Full text link
    The quantified constraint satisfaction problem (QCSP) is a powerful framework for modelling computational problems. The general intractability of the QCSP has motivated the pursuit of restricted cases that avoid its maximal complexity. In this paper, we introduce and study a new model for investigating QCSP complexity in which the types of constraints given by the existentially quantified variables, is restricted. Our primary technical contribution is the development and application of a general technology for proving positive results on parameterizations of the model, of inclusion in the complexity class coNP

    Model-Checking Problems as a Basis for Parameterized Intractability

    Full text link
    Most parameterized complexity classes are defined in terms of a parameterized version of the Boolean satisfiability problem (the so-called weighted satisfiability problem). For example, Downey and Fellow's W-hierarchy is of this form. But there are also classes, for example, the A-hierarchy, that are more naturally characterised in terms of model-checking problems for certain fragments of first-order logic. Downey, Fellows, and Regan were the first to establish a connection between the two formalisms by giving a characterisation of the W-hierarchy in terms of first-order model-checking problems. We improve their result and then prove a similar correspondence between weighted satisfiability and model-checking problems for the A-hierarchy and the W^*-hierarchy. Thus we obtain very uniform characterisations of many of the most important parameterized complexity classes in both formalisms. Our results can be used to give new, simple proofs of some of the core results of structural parameterized complexity theory.Comment: Changes in since v2: Metadata update

    Nesting Depth of Operators in Graph Database Queries: Expressiveness Vs. Evaluation Complexity

    Get PDF
    Designing query languages for graph structured data is an active field of research, where expressiveness and efficient algorithms for query evaluation are conflicting goals. To better handle dynamically changing data, recent work has been done on designing query languages that can compare values stored in the graph database, without hard coding the values in the query. The main idea is to allow variables in the query and bind the variables to values when evaluating the query. For query languages that bind variables only once, query evaluation is usually NP-complete. There are query languages that allow binding inside the scope of Kleene star operators, which can themselves be in the scope of bindings and so on. Uncontrolled nesting of binding and iteration within one another results in query evaluation being PSPACE-complete. We define a way to syntactically control the nesting depth of iterated bindings, and study how this affects expressiveness and efficiency of query evaluation. The result is an infinite, syntactically defined hierarchy of expressions. We prove that the corresponding language hierarchy is strict. Given an expression in the hierarchy, we prove that it is undecidable to check if there is a language equivalent expression at lower levels. We prove that evaluating a query based on an expression at level i can be done in Σi\Sigma_i in the polynomial time hierarchy. Satisfiability of quantified Boolean formulas can be reduced to query evaluation; we study the relationship between alternations in Boolean quantifiers and the depth of nesting of iterated bindings.Comment: Improvements from ICALP 2016 review comment

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page
    • …
    corecore