24,170 research outputs found

    Towards a CC-function in 4D quantum gravity

    Get PDF
    We develop a generally applicable method for constructing functions, CC, which have properties similar to Zamolodchikov's CC-function, and are geometrically natural objects related to the theory space explored by non-perturbative functional renormalization group (RG) equations. Employing the Euclidean framework of the Effective Average Action (EAA), we propose a CC-function which can be defined for arbitrary systems of gravitational, Yang-Mills, ghost, and bosonic matter fields, and in any number of spacetime dimensions. It becomes stationary both at critical points and in classical regimes, and decreases monotonically along RG trajectories provided the breaking of the split-symmetry which relates background and quantum fields is sufficiently weak. Within the Asymptotic Safety approach we test the proposal for Quantum Einstein Gravity in d>2d>2 dimensions, performing detailed numerical investigations in d=4d=4. We find that the bi-metric Einstein-Hilbert truncation of theory space introduced recently is general enough to yield perfect monotonicity along the RG trajectories, while its more familiar single-metric analog fails to achieve this behavior which we expect on general grounds. Investigating generalized crossover trajectories connecting a fixed point in the ultraviolet to a classical regime with positive cosmological constant in the infrared, the CC-function is shown to depend on the choice of the gravitational instanton which constitutes the background spacetime. For de Sitter space in 4 dimensions, the Bekenstein-Hawking entropy is found to play a role analogous to the central charge in conformal field theory. We also comment on the idea of a `Λ\Lambda-NN connection' and the `NN-bound' discussed earlier.Comment: 15 figures; additional comment

    Covariance and Fisher information in quantum mechanics

    Get PDF
    Variance and Fisher information are ingredients of the Cramer-Rao inequality. We regard Fisher information as a Riemannian metric on a quantum statistical manifold and choose monotonicity under coarse graining as the fundamental property of variance and Fisher information. In this approach we show that there is a kind of dual one-to-one correspondence between the candidates of the two concepts. We emphasis that Fisher informations are obtained from relative entropies as contrast functions on the state space and argue that the scalar curvature might be interpreted as an uncertainty density on a statistical manifold.Comment: LATE

    Intensional and Extensional Semantics of Bounded and Unbounded Nondeterminism

    Get PDF
    We give extensional and intensional characterizations of nondeterministic functional programs: as structure preserving functions between biorders, and as nondeterministic sequential algorithms on ordered concrete data structures which compute them. A fundamental result establishes that the extensional and intensional representations of non-deterministic programs are equivalent, by showing how to construct a unique sequential algorithm which computes a given monotone and stable function, and describing the conditions on sequential algorithms which correspond to continuity with respect to each order. We illustrate by defining may and must-testing denotational semantics for a sequential functional language with bounded and unbounded choice operators. We prove that these are computationally adequate, despite the non-continuity of the must-testing semantics of unbounded nondeterminism. In the bounded case, we prove that our continuous models are fully abstract with respect to may and must-testing by identifying a simple universal type, which may also form the basis for models of the untyped lambda-calculus. In the unbounded case we observe that our model contains computable functions which are not denoted by terms, by identifying a further "weak continuity" property of the definable elements, and use this to establish that it is not fully abstract
    • …
    corecore